Abstract:Recent deep learning-based image denoising methods have shown impressive performance; however, many lack the flexibility to adjust the denoising strength based on the noise levels, camera settings, and user preferences. In this paper, we introduce a new controllable denoising framework that adaptively removes noise from images by utilizing information from camera parameters. Specifically, we focus on ISO, shutter speed, and F-number, which are closely related to noise levels. We convert these selected parameters into a vector to control and enhance the performance of the denoising network. Experimental results show that our method seamlessly adds controllability to standard denoising neural networks and improves their performance. Code is available at https://github.com/OBAKSA/CPADNet.
Abstract:High dynamic range (HDR) imaging technique aims to create realistic HDR images from low dynamic range (LDR) inputs. Specifically, Multi-exposure HDR imaging uses multiple LDR frames taken from the same scene to improve reconstruction performance. However, there are often discrepancies in motion among the frames, and different exposure settings for each capture can lead to saturated regions. In this work, we first propose an Overlapped codebook (OLC) scheme, which can improve the capability of the VQGAN framework for learning implicit HDR representations by modeling the common exposure bracket process in the shared codebook structure. Further, we develop a new HDR network that utilizes HDR representations obtained from a pre-trained VQ network and OLC. This allows us to compensate for saturated regions and enhance overall visual quality. We have tested our approach extensively on various datasets and have demonstrated that it outperforms previous methods both qualitatively and quantitatively
Abstract:Estimating the 6D pose of unseen objects from monocular RGB images remains a challenging problem, especially due to the lack of prior object-specific knowledge. To tackle this issue, we propose RefPose, an innovative approach to object pose estimation that leverages a reference image and geometric correspondence as guidance. RefPose first predicts an initial pose by using object templates to render the reference image and establish the geometric correspondence needed for the refinement stage. During the refinement stage, RefPose estimates the geometric correspondence of the query based on the generated references and iteratively refines the pose through a render-and-compare approach. To enhance this estimation, we introduce a correlation volume-guided attention mechanism that effectively captures correlations between the query and reference images. Unlike traditional methods that depend on pre-defined object models, RefPose dynamically adapts to new object shapes by leveraging a reference image and geometric correspondence. This results in robust performance across previously unseen objects. Extensive evaluation on the BOP benchmark datasets shows that RefPose achieves state-of-the-art results while maintaining a competitive runtime.
Abstract:State Space Models (SSMs) have emerged as efficient alternatives to Transformers, mitigating their quadratic computational cost. However, the application of Parameter-Efficient Fine-Tuning (PEFT) methods to SSMs remains largely unexplored. In particular, prompt-based methods like Prompt Tuning and Prefix-Tuning, which are widely used in Transformers, do not perform well on SSMs. To address this, we propose state-based methods as a superior alternative to prompt-based methods. This new family of methods naturally stems from the architectural characteristics of SSMs. State-based methods adjust state-related features directly instead of depending on external prompts. Furthermore, we introduce a novel state-based PEFT method: State-offset Tuning. At every timestep, our method directly affects the state at the current step, leading to more effective adaptation. Through extensive experiments across diverse datasets, we demonstrate the effectiveness of our method. Code is available at https://github.com/furiosa-ai/ssm-state-tuning.
Abstract:Transformer-based Super-Resolution (SR) methods have demonstrated superior performance compared to convolutional neural network (CNN)-based SR approaches due to their capability to capture long-range dependencies. However, their high computational complexity necessitates the development of lightweight approaches for practical use. To address this challenge, we propose the Attention-Sharing Information Distillation (ASID) network, a lightweight SR network that integrates attention-sharing and an information distillation structure specifically designed for Transformer-based SR methods. We modify the information distillation scheme, originally designed for efficient CNN operations, to reduce the computational load of stacked self-attention layers, effectively addressing the efficiency bottleneck. Additionally, we introduce attention-sharing across blocks to further minimize the computational cost of self-attention operations. By combining these strategies, ASID achieves competitive performance with existing SR methods while requiring only around 300K parameters - significantly fewer than existing CNN-based and Transformer-based SR models. Furthermore, ASID outperforms state-of-the-art SR methods when the number of parameters is matched, demonstrating its efficiency and effectiveness. The code and supplementary material are available on the project page.
Abstract:Accurately estimating the pose of an object is a crucial task in computer vision and robotics. There are two main deep learning approaches for this: geometric representation regression and iterative refinement. However, these methods have some limitations that reduce their effectiveness. In this paper, we analyze these limitations and propose new strategies to overcome them. To tackle the issue of blurry geometric representation, we use positional encoding with high-frequency components for the object's 3D coordinates. To address the local minimum problem in refinement methods, we introduce a normalized image plane-based multi-reference refinement strategy that's independent of intrinsic matrix constraints. Lastly, we utilize adaptive instance normalization and a simple occlusion augmentation method to help our model concentrate on the target object. Our experiments on Linemod, Linemod-Occlusion, and YCB-Video datasets demonstrate that our approach outperforms existing methods. We will soon release the code.
Abstract:High dynamic range (HDR) imaging is a highly challenging task since a large amount of information is lost due to the limitations of camera sensors. For HDR imaging, some methods capture multiple low dynamic range (LDR) images with altering exposures to aggregate more information. However, these approaches introduce ghosting artifacts when significant inter-frame motions are present. Moreover, although multi-exposure images are given, we have little information in severely over-exposed areas. Most existing methods focus on motion compensation, i.e., alignment of multiple LDR shots to reduce the ghosting artifacts, but they still produce unsatisfying results. These methods also rather overlook the need to restore the saturated areas. In this paper, we generate well-aligned multi-exposure features by reformulating a motion alignment problem into a simple brightness adjustment problem. In addition, we propose a coarse-to-fine merging strategy with explicit saturation compensation. The saturated areas are reconstructed with similar well-exposed content using adaptive contextual attention. We demonstrate that our method outperforms the state-of-the-art methods regarding qualitative and quantitative evaluations.
Abstract:As demands for high-quality videos continue to rise, high-resolution and high-dynamic range (HDR) imaging techniques are drawing attention. To generate an HDR video from low dynamic range (LDR) images, one of the critical steps is the motion compensation between LDR frames, for which most existing works employed the optical flow algorithm. However, these methods suffer from flow estimation errors when saturation or complicated motions exist. In this paper, we propose an end-to-end HDR video composition framework, which aligns LDR frames in the feature space and then merges aligned features into an HDR frame, without relying on pixel-domain optical flow. Specifically, we propose a luminance-based alignment network for HDR (LAN-HDR) consisting of an alignment module and a hallucination module. The alignment module aligns a frame to the adjacent reference by evaluating luminance-based attention, excluding color information. The hallucination module generates sharp details, especially for washed-out areas due to saturation. The aligned and hallucinated features are then blended adaptively to complement each other. Finally, we merge the features to generate a final HDR frame. In training, we adopt a temporal loss, in addition to frame reconstruction losses, to enhance temporal consistency and thus reduce flickering. Extensive experiments demonstrate that our method performs better or comparable to state-of-the-art methods on several benchmarks.
Abstract:There have been many image denoisers using deep neural networks, which outperform conventional model-based methods by large margins. Recently, self-supervised methods have attracted attention because constructing a large real noise dataset for supervised training is an enormous burden. The most representative self-supervised denoisers are based on blind-spot networks, which exclude the receptive field's center pixel. However, excluding any input pixel is abandoning some information, especially when the input pixel at the corresponding output position is excluded. In addition, a standard blind-spot network fails to reduce real camera noise due to the pixel-wise correlation of noise, though it successfully removes independently distributed synthetic noise. Hence, to realize a more practical denoiser, we propose a novel self-supervised training framework that can remove real noise. For this, we derive the theoretic upper bound of a supervised loss where the network is guided by the downsampled blinded output. Also, we design a conditional blind-spot network (C-BSN), which selectively controls the blindness of the network to use the center pixel information. Furthermore, we exploit a random subsampler to decorrelate noise spatially, making the C-BSN free of visual artifacts that were often seen in downsample-based methods. Extensive experiments show that the proposed C-BSN achieves state-of-the-art performance on real-world datasets as a self-supervised denoiser and shows qualitatively pleasing results without any post-processing or refinement.
Abstract:Recent deep-learning-based video compression methods brought coding gains over conventional codecs such as AVC and HEVC. However, learning-based codecs generally require considerable computation time and model complexity. In this paper, we propose a new lightweight hybrid video codec consisting of a conventional video codec(HEVC / VVC), a lossless image codec, and our new restoration network. Precisely, our encoder consists of the conventional video encoder and a lossless image encoder, transmitting a lossy-compressed video bitstream along with a losslessly-compressed reference frame. The decoder is constructed with corresponding video/image decoders and a new restoration network, which enhances the compressed video in two-step processes. In the first step, a network trained with a large video dataset restores the details lost by the conventional encoder. Then, we further boost the video quality with the guidance of a reference image, which is a losslessly compressed video frame. The reference image provides video-specific information, which can be utilized to better restore the details of a compressed video. Experimental results show that the proposed method achieves comparable performance to top-tier methods, even when applied to HEVC. Nevertheless, our method has lower complexity, a faster run time, and can be easily integrated into existing conventional codecs.