Abstract:High dynamic range (HDR) imaging is a highly challenging task since a large amount of information is lost due to the limitations of camera sensors. For HDR imaging, some methods capture multiple low dynamic range (LDR) images with altering exposures to aggregate more information. However, these approaches introduce ghosting artifacts when significant inter-frame motions are present. Moreover, although multi-exposure images are given, we have little information in severely over-exposed areas. Most existing methods focus on motion compensation, i.e., alignment of multiple LDR shots to reduce the ghosting artifacts, but they still produce unsatisfying results. These methods also rather overlook the need to restore the saturated areas. In this paper, we generate well-aligned multi-exposure features by reformulating a motion alignment problem into a simple brightness adjustment problem. In addition, we propose a coarse-to-fine merging strategy with explicit saturation compensation. The saturated areas are reconstructed with similar well-exposed content using adaptive contextual attention. We demonstrate that our method outperforms the state-of-the-art methods regarding qualitative and quantitative evaluations.
Abstract:As demands for high-quality videos continue to rise, high-resolution and high-dynamic range (HDR) imaging techniques are drawing attention. To generate an HDR video from low dynamic range (LDR) images, one of the critical steps is the motion compensation between LDR frames, for which most existing works employed the optical flow algorithm. However, these methods suffer from flow estimation errors when saturation or complicated motions exist. In this paper, we propose an end-to-end HDR video composition framework, which aligns LDR frames in the feature space and then merges aligned features into an HDR frame, without relying on pixel-domain optical flow. Specifically, we propose a luminance-based alignment network for HDR (LAN-HDR) consisting of an alignment module and a hallucination module. The alignment module aligns a frame to the adjacent reference by evaluating luminance-based attention, excluding color information. The hallucination module generates sharp details, especially for washed-out areas due to saturation. The aligned and hallucinated features are then blended adaptively to complement each other. Finally, we merge the features to generate a final HDR frame. In training, we adopt a temporal loss, in addition to frame reconstruction losses, to enhance temporal consistency and thus reduce flickering. Extensive experiments demonstrate that our method performs better or comparable to state-of-the-art methods on several benchmarks.