Abstract:In this article, we explore computer vision approaches to detect abnormal head pose during e-learning sessions and we introduce a study on the effects of mobile phone usage during these sessions. We utilize behavioral data collected from 120 learners monitored while participating in a MOOC learning sessions. Our study focuses on the influence of phone-usage events on behavior and physiological responses, specifically attention, heart rate, and meditation, before, during, and after phone usage. Additionally, we propose an approach for estimating head pose events using images taken by the webcam during the MOOC learning sessions to detect phone-usage events. Our hypothesis suggests that head posture undergoes significant changes when learners interact with a mobile phone, contrasting with the typical behavior seen when learners face a computer during e-learning sessions. We propose an approach designed to detect deviations in head posture from the average observed during a learner's session, operating as a semi-supervised method. This system flags events indicating alterations in head posture for subsequent human review and selection of mobile phone usage occurrences with a sensitivity over 90%.
Abstract:This paper presents a multi dimensional view of AI's role in learning and education, emphasizing the intricate interplay between AI, analytics, and the learning processes. Here, I challenge the prevalent narrow conceptualization of AI as stochastic tools, as exemplified in generative AI, and argue for the importance of alternative conceptualisations of AI. I highlight the differences between human intelligence and artificial information processing, the cognitive diversity inherent in AI algorithms, and posit that AI can also serve as an instrument for understanding human learning. Early learning sciences and AI in Education research, which saw AI as an analogy for human intelligence, have diverged from this perspective, prompting a need to rekindle this connection. The paper presents three unique conceptualizations of AI in education: the externalization of human cognition, the internalization of AI models to influence human thought processes, and the extension of human cognition via tightly integrated human-AI systems. Examples from current research and practice are examined as instances of the three conceptualisations, highlighting the potential value and limitations of each conceptualisation for education, as well as the perils of overemphasis on externalising human cognition as exemplified in today's hype surrounding generative AI tools. The paper concludes with an advocacy for a broader educational approach that includes educating people about AI and innovating educational systems to remain relevant in an AI enabled world.
Abstract:Effective collaboration requires groups to strategically regulate themselves to overcome challenges. Research has shown that groups may fail to regulate due to differences in members' perceptions of challenges which may benefit from external support. In this study, we investigated the potential of leveraging three distinct natural language processing models: an expert knowledge rule-based model, a supervised machine learning (ML) model and a Large Language model (LLM), in challenge detection and challenge dimension identification (cognitive, metacognitive, emotional and technical/other challenges) from student discourse, was investigated. The results show that the supervised ML and the LLM approaches performed considerably well in both tasks, in contrast to the rule-based approach, whose efficacy heavily relies on the engineered features by experts. The paper provides an extensive discussion of the three approaches' performance for automated detection and support of students' challenge moments in collaborative learning activities. It argues that, although LLMs provide many advantages, they are unlikely to be the panacea to issues of the detection and feedback provision of socially shared regulation of learning due to their lack of reliability, as well as issues of validity evaluation, privacy and confabulation. We conclude the paper with a discussion on additional considerations, including model transparency to explore feasible and meaningful analytical feedback for students and educators using LLMs.
Abstract:In this article, we present a Web-based System called M2LADS, which supports the integration and visualization of multimodal data recorded in learning sessions in a MOOC in the form of Web-based Dashboards. Based on the edBB platform, the multimodal data gathered contains biometric and behavioral signals including electroencephalogram data to measure learners' cognitive attention, heart rate for affective measures, visual attention from the video recordings. Additionally, learners' static background data and their learning performance measures are tracked using LOGCE and MOOC tracking logs respectively, and both are included in the Web-based System. M2LADS provides opportunities to capture learners' holistic experience during their interactions with the MOOC, which can in turn be used to improve their learning outcomes through feedback visualizations and interventions, as well as to enhance learning analytics models and improve the open content of the MOOC.
Abstract:Recent advances in generative artificial intelligence (AI) have captured worldwide attention. Tools such as Dalle-2 and ChatGPT suggest that tasks previously thought to be beyond the capabilities of AI may now augment the productivity of creative media in various new ways, including through the generation of synthetic video. This research paper explores the utility of using AI-generated synthetic video to create viable educational content for online educational settings. To date, there is limited research investigating the real-world educational value of AI-generated synthetic media. To address this gap, we examined the impact of using AI-generated synthetic video in an online learning platform on both learners content acquisition and learning experience. We took a mixed-method approach, randomly assigning adult learners (n=83) into one of two micro-learning conditions, collecting pre- and post-learning assessments, and surveying participants on their learning experience. The control condition included a traditionally produced instructor video, while the experimental condition included a synthetic video with a realistic AI-generated character. The results show that learners in both conditions demonstrated significant improvement from pre- to post-learning (p<.001), with no significant differences in gains between the two conditions (p=.80). In addition, no differences were observed in how learners perceived the traditional and synthetic videos. These findings suggest that AI-generated synthetic learning videos have the potential to be a viable substitute for videos produced via traditional methods in online educational settings, making high quality educational content more accessible across the globe.
Abstract:Collaborative problem solving (CPS) enables student groups to complete learning tasks, construct knowledge, and solve problems. Previous research has argued the importance to examine the complexity of CPS, including its multimodality, dynamics, and synergy from the complex adaptive systems perspective. However, there is limited empirical research examining the adaptive and temporal characteristics of CPS which might lead to an oversimplified representation of the real complexity of the CPS process. To further understand the nature of CPS in online interaction settings, this research collected multimodal process and performance data (i.e., verbal audios, computer screen recordings, concept map data) and proposed a three-layered analytical framework that integrated AI algorithms with learning analytics to analyze the regularity of groups collaboration patterns. The results detected three types of collaborative patterns in groups, namely the behaviour-oriented collaborative pattern (Type 1) associated with medium-level performance, the communication - behaviour - synergistic collaborative pattern (Type 2) associated with high-level performance, and the communication-oriented collaborative pattern (Type 3) associated with low-level performance. The research further highlighted the multimodal, dynamic, and synergistic characteristics of groups collaborative patterns to explain the emergence of an adaptive, self-organizing system during the CPS process.