Abstract:Deep neural networks excel in regimes with large amounts of data, but tend to struggle when data is scarce or when they need to adapt quickly to changes in the task. In response, recent work in meta-learning proposes training a meta-learner on a distribution of similar tasks, in the hopes of generalization to novel but related tasks by learning a high-level strategy that captures the essence of the problem it is asked to solve. However, many recent meta-learning approaches are extensively hand-designed, either using architectures specialized to a particular application, or hard-coding algorithmic components that constrain how the meta-learner solves the task. We propose a class of simple and generic meta-learner architectures that use a novel combination of temporal convolutions and soft attention; the former to aggregate information from past experience and the latter to pinpoint specific pieces of information. In the most extensive set of meta-learning experiments to date, we evaluate the resulting Simple Neural AttentIve Learner (or SNAIL) on several heavily-benchmarked tasks. On all tasks, in both supervised and reinforcement learning, SNAIL attains state-of-the-art performance by significant margins.
Abstract:Autoregressive generative models consistently achieve the best results in density estimation tasks involving high dimensional data, such as images or audio. They pose density estimation as a sequence modeling task, where a recurrent neural network (RNN) models the conditional distribution over the next element conditioned on all previous elements. In this paradigm, the bottleneck is the extent to which the RNN can model long-range dependencies, and the most successful approaches rely on causal convolutions, which offer better access to earlier parts of the sequence than conventional RNNs. Taking inspiration from recent work in meta reinforcement learning, where dealing with long-range dependencies is also essential, we introduce a new generative model architecture that combines causal convolutions with self attention. In this note, we describe the resulting model and present state-of-the-art log-likelihood results on CIFAR-10 (2.85 bits per dim) and $32 \times 32$ ImageNet (3.80 bits per dim). Our implementation is available at https://github.com/neocxi/pixelsnail-public