Abstract:Prototyping complex computer-aided design (CAD) models in modern softwares can be very time-consuming. This is due to the lack of intelligent systems that can quickly generate simpler intermediate parts. We propose Text2CAD, the first AI framework for generating text-to-parametric CAD models using designer-friendly instructions for all skill levels. Furthermore, we introduce a data annotation pipeline for generating text prompts based on natural language instructions for the DeepCAD dataset using Mistral and LLaVA-NeXT. The dataset contains $\sim170$K models and $\sim660$K text annotations, from abstract CAD descriptions (e.g., generate two concentric cylinders) to detailed specifications (e.g., draw two circles with center $(x,y)$ and radius $r_{1}$, $r_{2}$, and extrude along the normal by $d$...). Within the Text2CAD framework, we propose an end-to-end transformer-based auto-regressive network to generate parametric CAD models from input texts. We evaluate the performance of our model through a mixture of metrics, including visual quality, parametric precision, and geometrical accuracy. Our proposed framework shows great potential in AI-aided design applications. Our source code and annotations will be publicly available.
Abstract:In machining process, 3D reverse engineering of the mechanical system is an integral, highly important, and yet time consuming step to obtain parametric CAD models from 3D scans. Therefore, deep learning-based Scan-to-CAD modeling can offer designers enormous editability to quickly modify CAD model, being able to parse all its structural compositions and design steps. In this paper, we propose a supervised boundary representation (BRep) detection network BRepDetNet from 3D scans of CC3D and ABC dataset. We have carefully annotated the 50K and 45K scans of both the datasets with appropriate topological relations (e.g., next, mate, previous) between the geometrical primitives (i.e., boundaries, junctions, loops, faces) of their BRep data structures. The proposed solution decomposes the Scan-to-CAD problem in Scan-to-BRep ensuring the right step towards feature-based modeling, and therefore, leveraging other existing BRep-to-CAD modeling methods. Our proposed Scan-to-BRep neural network learns to detect BRep boundaries and junctions by minimizing focal-loss and non-maximal suppression (NMS) during training time. Experimental results show that our BRepDetNet with NMS-Loss achieves impressive results.
Abstract:Reverse engineering in the realm of Computer-Aided Design (CAD) has been a longstanding aspiration, though not yet entirely realized. Its primary aim is to uncover the CAD process behind a physical object given its 3D scan. We propose CAD-SIGNet, an end-to-end trainable and auto-regressive architecture to recover the design history of a CAD model represented as a sequence of sketch-and-extrusion from an input point cloud. Our model learns visual-language representations by layer-wise cross-attention between point cloud and CAD language embedding. In particular, a new Sketch instance Guided Attention (SGA) module is proposed in order to reconstruct the fine-grained details of the sketches. Thanks to its auto-regressive nature, CAD-SIGNet not only reconstructs a unique full design history of the corresponding CAD model given an input point cloud but also provides multiple plausible design choices. This allows for an interactive reverse engineering scenario by providing designers with multiple next-step choices along with the design process. Extensive experiments on publicly available CAD datasets showcase the effectiveness of our approach against existing baseline models in two settings, namely, full design history recovery and conditional auto-completion from point clouds.
Abstract:Recent breakthroughs in geometric Deep Learning (DL) and the availability of large Computer-Aided Design (CAD) datasets have advanced the research on learning CAD modeling processes and relating them to real objects. In this context, 3D reverse engineering of CAD models from 3D scans is considered to be one of the most sought-after goals for the CAD industry. However, recent efforts assume multiple simplifications limiting the applications in real-world settings. The SHARP Challenge 2023 aims at pushing the research a step closer to the real-world scenario of CAD reverse engineering through dedicated datasets and tracks. In this paper, we define the proposed SHARP 2023 tracks, describe the provided datasets, and propose a set of baseline methods along with suitable evaluation metrics to assess the performance of the track solutions. All proposed datasets along with useful routines and the evaluation metrics are publicly available.