Abstract:Current communication technologies face limitations in terms of theoretical capacity, spectrum availability, and power resources. Pragmatic communication, leveraging terminal intelligence for selective data transmission, offers resource conservation. Existing research lacks universal intention resolution tools, limiting applicability to specific tasks. This paper proposes an image pragmatic communication framework based on a Pragmatic Agent for Communication Efficiency (PACE) using Large Language Models (LLM). In this framework, PACE sequentially performs semantic perception, intention resolution, and intention-oriented coding. To ensure the effective utilization of LLM in communication, a knowledge base is designed to supplement the necessary knowledge, dedicated prompts are introduced to facilitate understanding of pragmatic communication scenarios and task requirements, and a chain of thought is designed to assist in making reasonable trade-offs between transmission efficiency and cost. For experimental validation, this paper constructs an image pragmatic communication dataset along with corresponding evaluation standards. Simulation results indicate that the proposed method outperforms traditional and non-LLM-based pragmatic communication in terms of transmission efficiency.
Abstract:Shannon information theory is established based on probability and bits, and the communication technology based on this theory realizes the information age. The original goal of Shannon's information theory is to describe and transmit information content. However, due to information is related to cognition, and cognition is considered to be subjective, Shannon information theory is to describe and transmit information-bearing signals. With the development of the information age to the intelligent age, the traditional signal-oriented processing needs to be upgraded to content-oriented processing. For example, chat generative pre-trained transformer (ChatGPT) has initially realized the content processing capability based on massive data. For many years, researchers have been searching for the answer to what the information content in the signal is, because only when the information content is mathematically and accurately described can information-based machines be truly intelligent. This paper starts from rethinking the essence of the basic concepts of the information, such as semantics, meaning, information and knowledge, presents the mathematical characterization of the information content, investigate the relationship between them, studies the transformation from Shannon's signal information theory to semantic information theory, and therefore proposes a content-oriented semantic communication framework. Furthermore, we propose semantic decomposition and composition scheme to achieve conversion between complex and simple semantics. Finally, we verify the proposed characterization of information-related concepts by implementing evolvable knowledge-based semantic recognition.
Abstract:To acquire a snapshot spectral image, coded aperture snapshot spectral imaging (CASSI) is proposed. A core problem of the CASSI system is to recover the reliable and fine underlying 3D spectral cube from the 2D measurement. By alternately solving a data subproblem and a prior subproblem, deep unfolding methods achieve good performance. However, in the data subproblem, the used sensing matrix is ill-suited for the real degradation process due to the device errors caused by phase aberration, distortion; in the prior subproblem, it is important to design a suitable model to jointly exploit both spatial and spectral priors. In this paper, we propose a Residual Degradation Learning Unfolding Framework (RDLUF), which bridges the gap between the sensing matrix and the degradation process. Moreover, a Mix$S^2$ Transformer is designed via mixing priors across spectral and spatial to strengthen the spectral-spatial representation capability. Finally, plugging the Mix$S^2$ Transformer into the RDLUF leads to an end-to-end trainable and interpretable neural network RDLUF-Mix$S^2$. Experimental results establish the superior performance of the proposed method over existing ones.