Abstract:We introduce the LiLiuM series of large language models (LLMs): 1B, 7B, and 13B parameter models developed 100% in-house to fit eBay's specific needs in the e-commerce domain. This gives eBay full control over all aspects of the models including license, data, vocabulary, and architecture. We expect these models to be used as a foundation for fine-tuning and instruction-tuning, eliminating dependencies to external models. The LiLiuM LLMs have been trained on 3 trillion tokens of multilingual text from general and e-commerce domain. They perform similar to the popular LLaMA-2 models on English natural language understanding (NLU) benchmarks. At the same time, we outperform LLaMA-2 on non-English NLU tasks, machine translation and on e-commerce specific downstream tasks. As part of our data mixture, we utilize the newly released RedPajama-V2 dataset for training and share our insights regarding data filtering and deduplication. We also discuss in detail how to serialize structured data for use in autoregressive language modeling. We provide insights on the effects of including code and parallel machine translation data in pre-training. Furthermore, we develop our own tokenizer and model vocabulary, customized towards e-commerce. This way, we can achieve up to 34% speed-up in text generation on eBay-specific downstream tasks compared to LLaMA-2. Finally, in relation to LLM pretraining, we show that checkpoint averaging can further improve over the best individual model checkpoint.
Abstract:Product embedding serves as a cornerstone for a wide range of applications in eCommerce. The product embedding learned from multiple modalities shows significant improvement over that from a single modality, since different modalities provide complementary information. However, some modalities are more informatively dominant than others. How to teach a model to learn embedding from different modalities without neglecting information from the less dominant modality is challenging. We present an image-text embedding model (ITEm), an unsupervised learning method that is designed to better attend to image and text modalities. We extend BERT by (1) learning an embedding from text and image without knowing the regions of interest; (2) training a global representation to predict masked words and to construct masked image patches without their individual representations. We evaluate the pre-trained ITEm on two tasks: the search for extremely similar products and the prediction of product categories, showing substantial gains compared to strong baseline models.