Abstract:Existing zero-shot product attribute value (aspect) extraction approaches in e-Commerce industry rely on uni-modal or multi-modal models, where the sellers are asked to provide detailed textual inputs (product descriptions) for the products. However, manually providing (typing) the product descriptions is time-consuming and frustrating for the sellers. Thus, we propose a cross-modal zero-shot attribute value generation framework (ViOC-AG) based on CLIP, which only requires product images as the inputs. ViOC-AG follows a text-only training process, where a task-customized text decoder is trained with the frozen CLIP text encoder to alleviate the modality gap and task disconnection. During the zero-shot inference, product aspects are generated by the frozen CLIP image encoder connected with the trained task-customized text decoder. OCR tokens and outputs from a frozen prompt-based LLM correct the decoded outputs for out-of-domain attribute values. Experiments show that ViOC-AG significantly outperforms other fine-tuned vision-language models for zero-shot attribute value extraction.
Abstract:We introduce the LiLiuM series of large language models (LLMs): 1B, 7B, and 13B parameter models developed 100% in-house to fit eBay's specific needs in the e-commerce domain. This gives eBay full control over all aspects of the models including license, data, vocabulary, and architecture. We expect these models to be used as a foundation for fine-tuning and instruction-tuning, eliminating dependencies to external models. The LiLiuM LLMs have been trained on 3 trillion tokens of multilingual text from general and e-commerce domain. They perform similar to the popular LLaMA-2 models on English natural language understanding (NLU) benchmarks. At the same time, we outperform LLaMA-2 on non-English NLU tasks, machine translation and on e-commerce specific downstream tasks. As part of our data mixture, we utilize the newly released RedPajama-V2 dataset for training and share our insights regarding data filtering and deduplication. We also discuss in detail how to serialize structured data for use in autoregressive language modeling. We provide insights on the effects of including code and parallel machine translation data in pre-training. Furthermore, we develop our own tokenizer and model vocabulary, customized towards e-commerce. This way, we can achieve up to 34% speed-up in text generation on eBay-specific downstream tasks compared to LLaMA-2. Finally, in relation to LLM pretraining, we show that checkpoint averaging can further improve over the best individual model checkpoint.