Abstract:As the field of image generation rapidly advances, traditional diffusion models and those integrated with multimodal large language models (LLMs) still encounter limitations in interpreting complex prompts and preserving image consistency pre and post-editing. To tackle these challenges, we present an innovative image editing framework that employs the robust Chain-of-Thought (CoT) reasoning and localizing capabilities of multimodal LLMs to aid diffusion models in generating more refined images. We first meticulously design a CoT process comprising instruction decomposition, region localization, and detailed description. Subsequently, we fine-tune the LISA model, a lightweight multimodal LLM, using the CoT process of Multimodal LLMs and the mask of the edited image. By providing the diffusion models with knowledge of the generated prompt and image mask, our models generate images with a superior understanding of instructions. Through extensive experiments, our model has demonstrated superior performance in image generation, surpassing existing state-of-the-art models. Notably, our model exhibits an enhanced ability to understand complex prompts and generate corresponding images, while maintaining high fidelity and consistency in images before and after generation.
Abstract:Large text-to-image models have achieved astonishing performance in synthesizing diverse and high-quality images guided by texts. With detail-oriented conditioning control, even finer-grained spatial control can be achieved. However, some generated images still appear unreasonable, even with plentiful object features and a harmonious style. In this paper, we delve into the underlying causes and find that deep-level logical information, serving as common-sense knowledge, plays a significant role in understanding and processing images. Nonetheless, almost all models have neglected the importance of logical relations in images, resulting in poor performance in this aspect. Following this observation, we propose LogicalDefender, which combines images with the logical knowledge already summarized by humans in text. This encourages models to learn logical knowledge faster and better, and concurrently, extracts the widely applicable logical knowledge from both images and human knowledge. Experiments show that our model has achieved better logical performance, and the extracted logical knowledge can be effectively applied to other scenarios.
Abstract:Single object tracking aims to locate the target object in a video sequence according to the state specified by different modal references, including the initial bounding box (BBOX), natural language (NL), or both (NL+BBOX). Due to the gap between different modalities, most existing trackers are designed for single or partial of these reference settings and overspecialize on the specific modality. Differently, we present a unified tracker called UVLTrack, which can simultaneously handle all three reference settings (BBOX, NL, NL+BBOX) with the same parameters. The proposed UVLTrack enjoys several merits. First, we design a modality-unified feature extractor for joint visual and language feature learning and propose a multi-modal contrastive loss to align the visual and language features into a unified semantic space. Second, a modality-adaptive box head is proposed, which makes full use of the target reference to mine ever-changing scenario features dynamically from video contexts and distinguish the target in a contrastive way, enabling robust performance in different reference settings. Extensive experimental results demonstrate that UVLTrack achieves promising performance on seven visual tracking datasets, three vision-language tracking datasets, and three visual grounding datasets. Codes and models will be open-sourced at https://github.com/OpenSpaceAI/UVLTrack.