Abstract:Generally, the small size of public medical imaging datasets coupled with stringent privacy concerns, hampers the advancement of data-hungry deep learning models in medical imaging. This study addresses these challenges for 3D cardiac MRI images in the short-axis view. We propose Latent Diffusion Models that generate synthetic images conditioned on medical attributes, while ensuring patient privacy through differentially private model training. To our knowledge, this is the first work to apply and quantify differential privacy in 3D medical image generation. We pre-train our models on public data and finetune them with differential privacy on the UK Biobank dataset. Our experiments reveal that pre-training significantly improves model performance, achieving a Fr\'echet Inception Distance (FID) of 26.77 at $\epsilon=10$, compared to 92.52 for models without pre-training. Additionally, we explore the trade-off between privacy constraints and image quality, investigating how tighter privacy budgets affect output controllability and may lead to degraded performance. Our results demonstrate that proper consideration during training with differential privacy can substantially improve the quality of synthetic cardiac MRI images, but there are still notable challenges in achieving consistent medical realism.
Abstract:Interpretability is essential in medical imaging to ensure that clinicians can comprehend and trust artificial intelligence models. Several approaches have been recently considered to encode attributes in the latent space to enhance its interpretability. Notably, attribute regularization aims to encode a set of attributes along the dimensions of a latent representation. However, this approach is based on Variational AutoEncoder and suffers from blurry reconstruction. In this paper, we propose an Attributed-regularized Soft Introspective Variational Autoencoder that combines attribute regularization of the latent space within the framework of an adversarially trained variational autoencoder. We demonstrate on short-axis cardiac Magnetic Resonance images of the UK Biobank the ability of the proposed method to address blurry reconstruction issues of variational autoencoder methods while preserving the latent space interpretability.
Abstract:The Segment Anything Model (SAM) has recently emerged as a significant breakthrough in foundation models, demonstrating remarkable zero-shot performance in object segmentation tasks. While SAM is designed for generalization, it exhibits limitations in handling specific medical imaging tasks that require fine-structure segmentation or precise boundaries. In this paper, we focus on the task of cardiac magnetic resonance imaging (cMRI) short-axis view segmentation using the SAM foundation model. We conduct a comprehensive investigation of the impact of different prompting strategies (including bounding boxes, positive points, negative points, and their combinations) on segmentation performance. We evaluate on two public datasets using the baseline model and models fine-tuned with varying amounts of annotated data, ranging from a limited number of volumes to a fully annotated dataset. Our findings indicate that prompting strategies significantly influence segmentation performance. Combining positive points with either bounding boxes or negative points shows substantial benefits, but little to no benefit when combined simultaneously. We further observe that fine-tuning SAM with a few annotated volumes improves segmentation performance when properly prompted. Specifically, fine-tuning with bounding boxes has a positive impact, while fine-tuning without bounding boxes leads to worse results compared to baseline.
Abstract:Interpretability is essential in medical imaging to ensure that clinicians can comprehend and trust artificial intelligence models. In this paper, we propose a novel interpretable approach that combines attribute regularization of the latent space within the framework of an adversarially trained variational autoencoder. Comparative experiments on a cardiac MRI dataset demonstrate the ability of the proposed method to address blurry reconstruction issues of variational autoencoder methods and improve latent space interpretability. Additionally, our analysis of a downstream task reveals that the classification of cardiac disease using the regularized latent space heavily relies on attribute regularized dimensions, demonstrating great interpretability by connecting the used attributes for prediction with clinical observations.
Abstract:Deep generative models have emerged as influential instruments for data generation and manipulation. Enhancing the controllability of these models by selectively modifying data attributes has been a recent focus. Variational Autoencoders (VAEs) have shown promise in capturing hidden attributes but often produce blurry reconstructions. Controlling these attributes through different imaging domains is difficult in medical imaging. Recently, Soft Introspective VAE leverage the benefits of both VAEs and Generative Adversarial Networks (GANs), which have demonstrated impressive image synthesis capabilities, by incorporating an adversarial loss into VAE training. In this work, we propose the Attributed Soft Introspective VAE (Attri-SIVAE) by incorporating an attribute regularized loss, into the Soft-Intro VAE framework. We evaluate experimentally the proposed method on cardiac MRI data from different domains, such as various scanner vendors and acquisition centers. The proposed method achieves similar performance in terms of reconstruction and regularization compared to the state-of-the-art Attributed regularized VAE but additionally also succeeds in keeping the same regularization level when tested on a different dataset, unlike the compared method.
Abstract:Short axis cardiac MRI segmentation is a well-researched topic, with excellent results achieved by state-of-the-art models in a supervised setting. However, annotating MRI volumes is time-consuming and expensive. Many different approaches (e.g. transfer learning, data augmentation, few-shot learning, etc.) have emerged in an effort to use fewer annotated data and still achieve similar performance as a fully supervised model. Nevertheless, to the best of our knowledge, none of these works focus on which slices of MRI volumes are most important to annotate for yielding the best segmentation results. In this paper, we investigate the effects of training with sparse volumes, i.e. reducing the number of cases annotated, and sparse annotations, i.e. reducing the number of slices annotated per case. We evaluate the segmentation performance using the state-of-the-art nnU-Net model on two public datasets to identify which slices are the most important to annotate. We have shown that training on a significantly reduced dataset (48 annotated volumes) can give a Dice score greater than 0.85 and results comparable to using the full dataset (160 and 240 volumes for each dataset respectively). In general, training on more slice annotations provides more valuable information compared to training on more volumes. Further, annotating slices from the middle of volumes yields the most beneficial results in terms of segmentation performance, and the apical region the worst. When evaluating the trade-off between annotating volumes against slices, annotating as many slices as possible instead of annotating more volumes is a better strategy.