Abstract:The choice of activation function is an active area of research, with different proposals aimed at improving optimization, while maintaining expressivity. Additionally, the activation function can significantly alter the implicit inductive bias of the architecture, controlling its non-linear behavior. In this paper, in line with previous work, we argue that evolutionary search provides a useful framework for finding new activation functions, while we also make two novel observations. The first is that modern pipelines, such as AlphaEvolve, which relies on frontier LLMs as a mutator operator, allows for a much wider and flexible search space; e.g., over all possible python functions within a certain FLOP budget, eliminating the need for manually constructed search spaces. In addition, these pipelines will be biased towards meaningful activation functions, given their ability to represent common knowledge, leading to a potentially more efficient search of the space. The second observation is that, through this framework, one can target not only performance improvements but also activation functions that encode particular inductive biases. This can be done by using performance on out-of-distribution data as a fitness function, reflecting the degree to which the architecture respects the inherent structure in the data in a manner independent of distribution shifts. We carry an empirical exploration of this proposal and show that relatively small scale synthetic datasets can be sufficient for AlphaEvolve to discover meaningful activations.
Abstract:Before deployment in the real-world deep neural networks require thorough evaluation of how they handle both knowns, inputs represented in the training data, and unknowns (anomalies). This is especially important for scene understanding tasks with safety critical applications, such as in autonomous driving. Existing datasets allow evaluation of only knowns or unknowns - but not both, which is required to establish "in the wild" suitability of deep neural network models. To bridge this gap, we propose a novel anomaly segmentation dataset, ISSU, that features a diverse set of anomaly inputs from cluttered real-world environments. The dataset is twice larger than existing anomaly segmentation datasets, and provides a training, validation and test set for controlled in-domain evaluation. The test set consists of a static and temporal part, with the latter comprised of videos. The dataset provides annotations for both closed-set (knowns) and anomalies, enabling closed-set and open-set evaluation. The dataset covers diverse conditions, such as domain and cross-sensor shift, illumination variation and allows ablation of anomaly detection methods with respect to these variations. Evaluation results of current state-of-the-art methods confirm the need for improvements especially in domain-generalization, small and large object segmentation.