Abstract:Contrastive language-audio pre-training (CLAP) enables zero-shot (ZS) inference of audio and exhibits promising performance in several classification tasks. However, conventional audio representations are still crucial for many tasks where ZS is not applicable (e.g., regression problems). Here, we explore a new representation, a general-purpose audio-language representation, that performs well in both ZS and transfer learning. To do so, we propose a new method, M2D-CLAP, which combines self-supervised learning Masked Modeling Duo (M2D) and CLAP. M2D learns an effective representation to model audio signals, and CLAP aligns the representation with text embedding. As a result, M2D-CLAP learns a versatile representation that allows for both ZS and transfer learning. Experiments show that M2D-CLAP performs well on linear evaluation, fine-tuning, and ZS classification with a GTZAN state-of-the-art of 75.17%, thus achieving a general-purpose audio-language representation.
Abstract:Observations with distributed sensors are essential in analyzing a series of human and machine activities (referred to as 'events' in this paper) in complex and extensive real-world environments. This is because the information obtained from a single sensor is often missing or fragmented in such an environment; observations from multiple locations and modalities should be integrated to analyze events comprehensively. However, a learning method has yet to be established to extract joint representations that effectively combine such distributed observations. Therefore, we propose Guided Masked sELf-Distillation modeling (Guided-MELD) for inter-sensor relationship modeling. The basic idea of Guided-MELD is to learn to supplement the information from the masked sensor with information from other sensors needed to detect the event. Guided-MELD is expected to enable the system to effectively distill the fragmented or redundant target event information obtained by the sensors without being overly dependent on any specific sensors. To validate the effectiveness of the proposed method in novel tasks of distributed multimedia sensor event analysis, we recorded two new datasets that fit the problem setting: MM-Store and MM-Office. These datasets consist of human activities in a convenience store and an office, recorded using distributed cameras and microphones. Experimental results on these datasets show that the proposed Guided-MELD improves event tagging and detection performance and outperforms conventional inter-sensor relationship modeling methods. Furthermore, the proposed method performed robustly even when sensors were reduced.
Abstract:We aim to perform sound event localization and detection (SELD) using wearable equipment for a moving human, such as a pedestrian. Conventional SELD tasks have dealt only with microphone arrays located in static positions. However, self-motion with three rotational and three translational degrees of freedom (6DoF) shall be considered for wearable microphone arrays. A system trained only with a dataset using microphone arrays in a fixed position would be unable to adapt to the fast relative motion of sound events associated with self-motion, resulting in the degradation of SELD performance. To address this, we designed 6DoF SELD Dataset for wearable systems, the first SELD dataset considering the self-motion of microphones. Furthermore, we proposed a multi-modal SELD system that jointly utilizes audio and motion tracking sensor signals. These sensor signals are expected to help the system find useful acoustic cues for SELD on the basis of the current self-motion state. Experimental results on our dataset show that the proposed method effectively improves SELD performance with a mechanism to extract acoustic features conditioned by sensor signals.
Abstract:This paper provides a baseline system for First-shot-compliant unsupervised anomaly detection (ASD) for machine condition monitoring. First-shot ASD does not allow systems to do machine-type dependent hyperparameter tuning or tool ensembling based on the performance metric calculated with the grand truth. To show benchmark performance for First-shot ASD, this paper proposes an anomaly sound detection system that works on the domain generalization task in the Detection and Classification of Acoustic Scenes and Events (DCASE) 2022 Challenge Task 2: "Unsupervised Anomalous Sound Detection for Machine Condition Monitoring Applying Domain Generalization Technique" while complying with the First-shot requirements introduced in the DCASE 2023 Challenge Task 2 (DCASE2023T2). A simple autoencoder based implementation combined with selective Mahalanobis metric is implemented as a baseline system. The performance evaluation is conducted to set the target benchmark for the forthcoming DCASE2023T2. Source code of the baseline system will be available on GitHub: https://github.com/nttcslab/dcase2023_task2_baseline_ae .
Abstract:We tackle a challenging task: multi-view and multi-modal event detection that detects events in a wide-range real environment by utilizing data from distributed cameras and microphones and their weak labels. In this task, distributed sensors are utilized complementarily to capture events that are difficult to capture with a single sensor, such as a series of actions of people moving in an intricate room, or communication between people located far apart in a room. For sensors to cooperate effectively in such a situation, the system should be able to exchange information among sensors and combines information that is useful for identifying events in a complementary manner. For such a mechanism, we propose a Transformer-based multi-sensor fusion (MultiTrans) which combines multi-sensor data on the basis of the relationships between features of different viewpoints and modalities. In the experiments using a dataset newly collected for this task, our proposed method using MultiTrans improved the event detection performance and outperformed comparatives.
Abstract:Our goal is to develop a sound event localization and detection (SELD) system that works robustly in unknown environments. A SELD system trained on known environment data is degraded in an unknown environment due to environmental effects such as reverberation and noise not contained in the training data. Previous studies on related tasks have shown that domain adaptation methods are effective when data on the environment in which the system will be used is available even without labels. However adaptation to unknown environments remains a difficult task. In this study, we propose echo-aware feature refinement (EAR) for SELD, which suppresses environmental effects at the feature level by using additional spatial cues of the unknown environment obtained through measuring acoustic echoes. FOA-MEIR, an impulse response dataset containing over 100 environments, was recorded to validate the proposed method. Experiments on FOA-MEIR show that the EAR effectively improves SELD performance in unknown environments.
Abstract:Sound event localization and detection (SELD) is a combined task of identifying the sound event and its direction. Deep neural networks (DNNs) are utilized to associate them with the sound signals observed by a microphone array. Although ambisonic microphones are popular in the literature of SELD, they might limit the range of applications due to their predetermined geometry. Some applications (including those for pedestrians that perform SELD while walking) require a wearable microphone array whose geometry can be designed to suit the task. In this paper, for the development of such a wearable SELD, we propose a dataset named Wearable SELD dataset. It consists of data recorded by 24 microphones placed on a head and torso simulators (HATS) with some accessories mimicking wearable devices (glasses, earphones, and headphones). We also provide experimental results of SELD using the proposed dataset and SELDNet to investigate the effect of microphone configuration.
Abstract:In this paper, we propose an audio declipping method that takes advantages of both sparse optimization and deep learning. Since sparsity-based audio declipping methods have been developed upon constrained optimization, they are adjustable and well-studied in theory. However, they always uniformly promote sparsity and ignore the individual properties of a signal. Deep neural network (DNN)-based methods can learn the properties of target signals and use them for audio declipping. Still, they cannot perform well if the training data have mismatches and/or constraints in the time domain are not imposed. In the proposed method, we use a DNN in an optimization algorithm. It is inspired by an idea called plug-and-play (PnP) and enables us to promote sparsity based on the learned information of data, considering constraints in the time domain. Our experiments confirmed that the proposed method is stable and robust to mismatches between training and test data.
Abstract:This paper proposes a new large-scale dataset called "ToyADMOS2" for anomaly detection in machine operating sounds (ADMOS). As did for our previous ToyADMOS dataset, we collected a large number of operating sounds of miniature machines (toys) under normal and anomaly conditions by deliberately damaging them but extended with providing controlled depth of damages in anomaly samples. Since typical application scenarios of ADMOS often require robust performance under domain-shift conditions, the ToyADMOS2 dataset is designed for evaluating systems under such conditions. The released dataset consists of two sub-datasets for machine-condition inspection: fault diagnosis of machines with geometrically fixed tasks and fault diagnosis of machines with moving tasks. Domain shifts are represented by introducing several differences in operating conditions, such as the use of the same machine type but with different machine models and parts configurations, different operating speeds, microphone arrangements, etc. Each sub-dataset contains over 27 k samples of normal machine-operating sounds and over 8 k samples of anomalous sounds recorded with five to eight microphones. The dataset is freely available for download at https://github.com/nttcslab/ToyADMOS2-dataset and https://doi.org/10.5281/zenodo.4580270.
Abstract:The goal of audio captioning is to translate input audio into its description using natural language. One of the problems in audio captioning is the lack of training data due to the difficulty in collecting audio-caption pairs by crawling the web. In this study, to overcome this problem, we propose to use a pre-trained large-scale language model. Since an audio input cannot be directly inputted into such a language model, we utilize guidance captions retrieved from a training dataset based on similarities that may exist in different audio. Then, the caption of the audio input is generated by using a pre-trained language model while referring to the guidance captions. Experimental results show that (i) the proposed method has succeeded to use a pre-trained language model for audio captioning, and (ii) the oracle performance of the pre-trained model-based caption generator was clearly better than that of the conventional method trained from scratch.