Abstract:We present the task description of the Detection and Classification of Acoustic Scenes and Events (DCASE) 2024 Challenge Task 2: First-shot unsupervised anomalous sound detection (ASD) for machine condition monitoring. Continuing from last year's DCASE 2023 Challenge Task 2, we organize the task as a first-shot problem under domain generalization required settings. The main goal of the first-shot problem is to enable rapid deployment of ASD systems for new kinds of machines without the need for machine-specific hyperparameter tunings. This problem setting was realized by (1) giving only one section for each machine type and (2) having completely different machine types for the development and evaluation datasets. For the DCASE 2024 Challenge Task 2, data of completely new machine types were newly collected and provided as the evaluation dataset. In addition, attribute information such as the machine operation conditions were concealed for several machine types to mimic situations where such information are unavailable. We will add challenge results and analysis of the submissions after the challenge submission deadline.
Abstract:Contrastive language-audio pre-training (CLAP) enables zero-shot (ZS) inference of audio and exhibits promising performance in several classification tasks. However, conventional audio representations are still crucial for many tasks where ZS is not applicable (e.g., regression problems). Here, we explore a new representation, a general-purpose audio-language representation, that performs well in both ZS and transfer learning. To do so, we propose a new method, M2D-CLAP, which combines self-supervised learning Masked Modeling Duo (M2D) and CLAP. M2D learns an effective representation to model audio signals, and CLAP aligns the representation with text embedding. As a result, M2D-CLAP learns a versatile representation that allows for both ZS and transfer learning. Experiments show that M2D-CLAP performs well on linear evaluation, fine-tuning, and ZS classification with a GTZAN state-of-the-art of 75.17%, thus achieving a general-purpose audio-language representation.
Abstract:To reduce the need for skilled clinicians in heart sound interpretation, recent studies on automating cardiac auscultation have explored deep learning approaches. However, despite the demands for large data for deep learning, the size of the heart sound datasets is limited, and no pre-trained model is available. On the contrary, many pre-trained models for general audio tasks are available as general-purpose audio representations. This study explores the potential of general-purpose audio representations pre-trained on large-scale datasets for transfer learning in heart murmur detection. Experiments on the CirCor DigiScope heart sound dataset show that the recent self-supervised learning Masked Modeling Duo (M2D) outperforms previous methods with the results of a weighted accuracy of 0.832 and an unweighted average recall of 0.713. Experiments further confirm improved performance by ensembling M2D with other models. These results demonstrate the effectiveness of general-purpose audio representation in processing heart sounds and open the way for further applications. Our code is available online which runs on a 24 GB consumer GPU at https://github.com/nttcslab/m2d/tree/master/app/circor
Abstract:Self-supervised learning (SSL) using masked prediction has made great strides in general-purpose audio representation. This study proposes Masked Modeling Duo (M2D), an improved masked prediction SSL, which learns by predicting representations of masked input signals that serve as training signals. Unlike conventional methods, M2D obtains a training signal by encoding only the masked part, encouraging the two networks in M2D to model the input. While M2D improves general-purpose audio representations, a specialized representation is essential for real-world applications, such as in industrial and medical domains. The often confidential and proprietary data in such domains is typically limited in size and has a different distribution from that in pre-training datasets. Therefore, we propose M2D for X (M2D-X), which extends M2D to enable the pre-training of specialized representations for an application X. M2D-X learns from M2D and an additional task and inputs background noise. We make the additional task configurable to serve diverse applications, while the background noise helps learn on small data and forms a denoising task that makes representation robust. With these design choices, M2D-X should learn a representation specialized to serve various application needs. Our experiments confirmed that the representations for general-purpose audio, specialized for the highly competitive AudioSet and speech domain, and a small-data medical task achieve top-level performance, demonstrating the potential of using our models as a universal audio pre-training framework. Our code is available online for future studies at https://github.com/nttcslab/m2d
Abstract:The aim of this research is to refine knowledge transfer on audio-image temporal agreement for audio-text cross retrieval. To address the limited availability of paired non-speech audio-text data, learning methods for transferring the knowledge acquired from a large amount of paired audio-image data to shared audio-text representation have been investigated, suggesting the importance of how audio-image co-occurrence is learned. Conventional approaches in audio-image learning assign a single image randomly selected from the corresponding video stream to the entire audio clip, assuming their co-occurrence. However, this method may not accurately capture the temporal agreement between the target audio and image because a single image can only represent a snapshot of a scene, though the target audio changes from moment to moment. To address this problem, we propose two methods for audio and image matching that effectively capture the temporal information: (i) Nearest Match wherein an image is selected from multiple time frames based on similarity with audio, and (ii) Multiframe Match wherein audio and image pairs of multiple time frames are used. Experimental results show that method (i) improves the audio-text retrieval performance by selecting the nearest image that aligns with the audio information and transferring the learned knowledge. Conversely, method (ii) improves the performance of audio-image retrieval while not showing significant improvements in audio-text retrieval performance. These results indicate that refining audio-image temporal agreement may contribute to better knowledge transfer to audio-text retrieval.
Abstract:We proposed Audio Difference Captioning (ADC) as a new extension task of audio captioning for describing the semantic differences between input pairs of similar but slightly different audio clips. The ADC solves the problem that conventional audio captioning sometimes generates similar captions for similar audio clips, failing to describe the difference in content. We also propose a cross-attention-concentrated transformer encoder to extract differences by comparing a pair of audio clips and a similarity-discrepancy disentanglement to emphasize the difference in the latent space. To evaluate the proposed methods, we built an AudioDiffCaps dataset consisting of pairs of similar but slightly different audio clips with human-annotated descriptions of their differences. The experiment with the AudioDiffCaps dataset showed that the proposed methods solve the ADC task effectively and improve the attention weights to extract the difference by visualizing them in the transformer encoder.
Abstract:Self-supervised learning general-purpose audio representations have demonstrated high performance in a variety of tasks. Although they can be optimized for application by fine-tuning, even higher performance can be expected if they can be specialized to pre-train for an application. This paper explores the challenges and solutions in specializing general-purpose audio representations for a specific application using speech, a highly demanding field, as an example. We enhance Masked Modeling Duo (M2D), a general-purpose model, to close the performance gap with state-of-the-art (SOTA) speech models. To do so, we propose a new task, denoising distillation, to learn from fine-grained clustered features, and M2D for Speech (M2D-S), which jointly learns the denoising distillation task and M2D masked prediction task. Experimental results show that M2D-S performs comparably to or outperforms SOTA speech models on the SUPERB benchmark, demonstrating that M2D can specialize in a demanding field. Our code is available at: https://github.com/nttcslab/m2d/tree/master/speech
Abstract:We present the task description of the Detection and Classification of Acoustic Scenes and Events (DCASE) 2023 Challenge Task 2: "First-shot unsupervised anomalous sound detection (ASD) for machine condition monitoring". The main goal is to enable rapid deployment of ASD systems for new kinds of machines using only a few normal samples, without the need for hyperparameter tuning. In the past ASD tasks, developed methods tuned hyperparameters for each machine type, as the development and evaluation datasets had the same machine types. However, collecting normal and anomalous data as the development dataset can be infeasible in practice. In 2023 Task 2, we focus on solving first-shot problem, which is the challenge of training a model on a few machines of a completely novel machine type. Specifically, (i) each machine type has only one section, and (ii) machine types in the development and evaluation datasets are completely different. We will add challenge results and analysis of the submissions after the challenge submission deadline.
Abstract:This paper provides a baseline system for First-shot-compliant unsupervised anomaly detection (ASD) for machine condition monitoring. First-shot ASD does not allow systems to do machine-type dependent hyperparameter tuning or tool ensembling based on the performance metric calculated with the grand truth. To show benchmark performance for First-shot ASD, this paper proposes an anomaly sound detection system that works on the domain generalization task in the Detection and Classification of Acoustic Scenes and Events (DCASE) 2022 Challenge Task 2: "Unsupervised Anomalous Sound Detection for Machine Condition Monitoring Applying Domain Generalization Technique" while complying with the First-shot requirements introduced in the DCASE 2023 Challenge Task 2 (DCASE2023T2). A simple autoencoder based implementation combined with selective Mahalanobis metric is implemented as a baseline system. The performance evaluation is conducted to set the target benchmark for the forthcoming DCASE2023T2. Source code of the baseline system will be available on GitHub: https://github.com/nttcslab/dcase2023_task2_baseline_ae .
Abstract:Masked Autoencoders is a simple yet powerful self-supervised learning method. However, it learns representations indirectly by reconstructing masked input patches. Several methods learn representations directly by predicting representations of masked patches; however, we think using all patches to encode training signal representations is suboptimal. We propose a new method, Masked Modeling Duo (M2D), that learns representations directly while obtaining training signals using only masked patches. In the M2D, the online network encodes visible patches and predicts masked patch representations, and the target network, a momentum encoder, encodes masked patches. To better predict target representations, the online network should model the input well, while the target network should also model it well to agree with online predictions. Then the learned representations should better model the input. We validated the M2D by learning general-purpose audio representations, and M2D set new state-of-the-art performance on tasks such as UrbanSound8K, VoxCeleb1, AudioSet20K, GTZAN, and SpeechCommandsV2.