Abstract:This paper proposes a framework of explaining anomalous machine sounds in the context of anomalous sound detection~(ASD). While ASD has been extensively explored, identifying how anomalous sounds differ from normal sounds is also beneficial for machine condition monitoring. However, existing sound difference captioning methods require anomalous sounds for training, which is impractical in typical machine condition monitoring settings where such sounds are unavailable. To solve this issue, we propose a new strategy for explaining anomalous differences that does not require anomalous sounds for training. Specifically, we introduce a framework that explains differences in predefined timbre attributes instead of using free-form text captions. Objective metrics of timbre attributes can be computed using timbral models developed through psycho-acoustical research, enabling the estimation of how and what timbre attributes have changed from normal sounds without training machine learning models. Additionally, to accurately determine timbre differences regardless of variations in normal training data, we developed a method that jointly conducts anomalous sound detection and timbre difference estimation based on a k-nearest neighbors method in an audio embedding space. Evaluation using the MIMII DG dataset demonstrated the effectiveness of the proposed method.
Abstract:Insufficient recordings and the scarcity of anomalies present significant challenges in developing and validating robust anomaly detection systems for machine sounds. To address these limitations, we propose a novel approach for generating diverse anomalies in machine sound using a latent diffusion-based model that integrates an encoder-decoder framework. Our method utilizes the Flan-T5 model to encode captions derived from audio file metadata, enabling conditional generation through a carefully designed U-Net architecture. This approach aids our model in generating audio signals within the EnCodec latent space, ensuring high contextual relevance and quality. We objectively evaluated the quality of our generated sounds using the Fr\'echet Audio Distance (FAD) score and other metrics, demonstrating that our approach surpasses existing models in generating reliable machine audio that closely resembles actual abnormal conditions. The evaluation of the anomaly detection system using our generated data revealed a strong correlation, with the area under the curve (AUC) score differing by 4.8\% from the original, validating the effectiveness of our generated data. These results demonstrate the potential of our approach to enhance the evaluation and robustness of anomaly detection systems across varied and previously unseen conditions. Audio samples can be found at \url{https://hpworkhub.github.io/MIMII-Gen.github.io/}.
Abstract:Due to scarcity of time-series data annotated with descriptive texts, training a model to generate descriptive texts for time-series data is challenging. In this study, we propose a method to systematically generate domain-independent descriptive texts from time-series data. We identify two distinct approaches for creating pairs of time-series data and descriptive texts: the forward approach and the backward approach. By implementing the novel backward approach, we create the Temporal Automated Captions for Observations (TACO) dataset. Experimental results demonstrate that a contrastive learning based model trained using the TACO dataset is capable of generating descriptive texts for time-series data in novel domains.
Abstract:We present the task description of the Detection and Classification of Acoustic Scenes and Events (DCASE) 2024 Challenge Task 2: First-shot unsupervised anomalous sound detection (ASD) for machine condition monitoring. Continuing from last year's DCASE 2023 Challenge Task 2, we organize the task as a first-shot problem under domain generalization required settings. The main goal of the first-shot problem is to enable rapid deployment of ASD systems for new kinds of machines without the need for machine-specific hyperparameter tunings. This problem setting was realized by (1) giving only one section for each machine type and (2) having completely different machine types for the development and evaluation datasets. For the DCASE 2024 Challenge Task 2, data of completely new machine types were newly collected and provided as the evaluation dataset. In addition, attribute information such as the machine operation conditions were concealed for several machine types to mimic situations where such information are unavailable. We will add challenge results and analysis of the submissions after the challenge submission deadline.
Abstract:We present the task description of the Detection and Classification of Acoustic Scenes and Events (DCASE) 2023 Challenge Task 2: "First-shot unsupervised anomalous sound detection (ASD) for machine condition monitoring". The main goal is to enable rapid deployment of ASD systems for new kinds of machines using only a few normal samples, without the need for hyperparameter tuning. In the past ASD tasks, developed methods tuned hyperparameters for each machine type, as the development and evaluation datasets had the same machine types. However, collecting normal and anomalous data as the development dataset can be infeasible in practice. In 2023 Task 2, we focus on solving first-shot problem, which is the challenge of training a model on a few machines of a completely novel machine type. Specifically, (i) each machine type has only one section, and (ii) machine types in the development and evaluation datasets are completely different. We will add challenge results and analysis of the submissions after the challenge submission deadline.
Abstract:Semi-supervised anomaly detection~(SSAD) is a task where normal data and a limited number of anomalous data are available for training. In practical situations, SSAD methods suffer adapting to domain shifts, since anomalous data are unlikely to be available for the target domain in the training phase. To solve this problem, we propose a domain adaptation method for SSAD where no anomalous data are available for the target domain. First, we introduce a domain-adversarial network to a variational auto-encoder-based SSAD model to obtain domain-invariant latent variables. Since the decoder cannot reconstruct the original data solely from domain-invariant latent variables, we conditioned the decoder on the domain label. To compensate for the missing anomalous data of the target domain, we introduce an importance sampling-based weighted loss function that approximates the ideal loss function. Experimental results indicate that the proposed method helps adapt SSAD models to the target domain when no anomalous data are available for the target domain.
Abstract:We present the task description of the Detection and Classification of Acoustic Scenes and Events (DCASE) 2022 Challenge Task 2: "Unsupervised anomalous sound detection (ASD) for machine condition monitoring applying domain generalization techniques". Domain shifts are a critical problem for the application of ASD systems. Because domain shifts can change the acoustic characteristics of data, a model trained in a source domain performs poorly for a target domain. In DCASE 2021 Challenge Task 2, we organized an ASD task for handling domain shifts. In this task, it was assumed that the occurrences of domain shifts are known. However, in practice, the domain of each sample may not be given, and the domain shifts can occur implicitly. In 2022 Task 2, we focus on domain generalization techniques that detects anomalies regardless of the domain shifts. Specifically, the domain of each sample is not given in the test data and only one threshold is allowed for all domains. We will add challenge results and analysis of the submissions after the challenge submission deadline.
Abstract:This paper aims to develop an acoustic signal-based unsupervised anomaly detection method for automatic machine monitoring. Existing approaches such as deep autoencoder (DAE), variational autoencoder (VAE), conditional variational autoencoder (CVAE) etc. have limited representation capabilities in the latent space and, hence, poor anomaly detection performance. Different models have to be trained for each different kind of machines to accurately perform the anomaly detection task. To solve this issue, we propose a new method named as hierarchical conditional variational autoencoder (HCVAE). This method utilizes available taxonomic hierarchical knowledge about industrial facility to refine the latent space representation. This knowledge helps model to improve the anomaly detection performance as well. We demonstrated the generalization capability of a single HCVAE model for different types of machines by using appropriate conditions. Additionally, to show the practicability of the proposed approach, (i) we evaluated HCVAE model on different domain and (ii) we checked the effect of partial hierarchical knowledge. Our results show that HCVAE method validates both of these points, and it outperforms the baseline system on anomaly detection task by utmost 15 % on the AUC score metric.
Abstract:We present a machine sound dataset to benchmark domain generalization techniques for anomalous sound detection (ASD). To handle performance degradation caused by domain shifts that are difficult to detect or too frequent to adapt, domain generalization techniques are preferred. However, currently available datasets have difficulties in evaluating these techniques, such as limited number of values for parameters that cause domain shifts (domain shift parameters). In this paper, we present the first ASD dataset for the domain generalization techniques, called MIMII DG. The dataset consists of five machine types and three domain shift scenarios for each machine type. We prepared at least two values for the domain shift parameters in the source domain. Also, we introduced domain shifts that can be difficult to notice. Experimental results using two baseline systems indicate that the dataset reproduces the domain shift scenarios and is useful for benchmarking domain generalization techniques.
Abstract:We have developed an unsupervised anomalous sound detection method for machine condition monitoring that utilizes an auxiliary task -- detecting when the target machine is active. First, we train a model that detects machine activity by using normal data with machine activity labels and then use the activity-detection error as the anomaly score for a given sound clip if we have access to the ground-truth activity labels in the inference phase. If these labels are not available, the anomaly score is calculated through outlier detection on the embedding vectors obtained by the activity-detection model. Solving this auxiliary task enables the model to learn the difference between the target machine sounds and similar background noise, which makes it possible to identify small deviations in the target sounds. Experimental results showed that the proposed method improves the anomaly-detection performance of the conventional method complementarily by means of an ensemble.