Abstract:Abstract argumentation is a popular toolkit for modeling, evaluating, and comparing arguments. Relationships between arguments are specified in argumentation frameworks (AFs), and conditions are placed on sets (extensions) of arguments that allow AFs to be evaluated. For more expressiveness, AFs are augmented with \emph{acceptance conditions} on directly interacting arguments or a constraint on the admissible sets of arguments, resulting in dialectic frameworks or constrained argumentation frameworks. In this paper, we consider flexible conditions for \emph{rejecting} an argument from an extension, which we call rejection conditions (RCs). On the technical level, we associate each argument with a specific logic program. We analyze the resulting complexity, including the structural parameter treewidth. Rejection AFs are highly expressive, giving rise to natural problems on higher levels of the polynomial hierarchy.
Abstract:Answer Set Programming (ASP) is a generic problem modeling and solving framework with a strong focus on knowledge representation and a rapid growth of industrial applications. So far, the study of complexity resulted in characterizing hardness and determining their sources, fine-grained insights in the form of dichotomy-style results, as well as detailed parameterized complexity landscapes. Unfortunately, for the well-known parameter treewidth disjunctive programs require double-exponential runtime under reasonable complexity assumptions. This quickly becomes out of reach. We deal with the classification of structural parameters for disjunctive ASP on the program's rule structure (incidence graph). First, we provide a polynomial kernel to obtain single-exponential runtime in terms of vertex cover size, despite subset-minimization being not represented in the program's structure. Then we turn our attention to strictly better structural parameters between vertex cover size and treewidth. Here, we provide double-exponential lower bounds for the most prominent parameters in that range: treedepth, feedback vertex size, and cliquewidth. Based on this, we argue that unfortunately our options beyond vertex cover size are limited. Our results provide an in-depth hardness study, relying on a novel reduction from normal to disjunctive programs, trading the increase of complexity for an exponential parameter compression.
Abstract:Answer set programming (ASP) is a popular declarative programming paradigm with various applications. Programs can easily have many answer sets that cannot be enumerated in practice, but counting still allows quantifying solution spaces. If one counts under assumptions on literals, one obtains a tool to comprehend parts of the solution space, so-called answer set navigation. However, navigating through parts of the solution space requires counting many times, which is expensive in theory. Knowledge compilation compiles instances into representations on which counting works in polynomial time. However, these techniques exist only for CNF formulas, and compiling ASP programs into CNF formulas can introduce an exponential overhead. This paper introduces a technique to iteratively count answer sets under assumptions on knowledge compilations of CNFs that encode supported models. Our anytime technique uses the inclusion-exclusion principle to improve bounds by over- and undercounting systematically. In a preliminary empirical analysis, we demonstrate promising results. After compiling the input (offline phase), our approach quickly (re)counts.
Abstract:In this paper, we introduce a novel algorithm to solve projected model counting (PMC). PMC asks to count solutions of a Boolean formula with respect to a given set of projection variables, where multiple solutions that are identical when restricted to the projection variables count as only one solution. Inspired by the observation that the so-called "treewidth" is one of the most prominent structural parameters, our algorithm utilizes small treewidth of the primal graph of the input instance. More precisely, it runs in time O(2^2k+4n2) where k is the treewidth and n is the input size of the instance. In other words, we obtain that the problem PMC is fixed-parameter tractable when parameterized by treewidth. Further, we take the exponential time hypothesis (ETH) into consideration and establish lower bounds of bounded treewidth algorithms for PMC, yielding asymptotically tight runtime bounds of our algorithm. While the algorithm above serves as a first theoretical upper bound and although it might be quite appealing for small values of k, unsurprisingly a naive implementation adhering to this runtime bound suffers already from instances of relatively small width. Therefore, we turn our attention to several measures in order to resolve this issue towards exploiting treewidth in practice: We present a technique called nested dynamic programming, where different levels of abstractions of the primal graph are used to (recursively) compute and refine tree decompositions of a given instance. Finally, we provide a nested dynamic programming algorithm and an implementation that relies on database technology for PMC and a prominent special case of PMC, namely model counting (#Sat). Experiments indicate that the advancements are promising, allowing us to solve instances of treewidth upper bounds beyond 200.
Abstract:Answer Set Programming (ASP) is a problem modeling and solving framework for several problems in KR with growing industrial applications. Also for studies of computational complexity and deeper insights into the hardness and its sources, ASP has been attracting researchers for many years. These studies resulted in fruitful characterizations in terms of complexity classes, fine-grained insights in form of dichotomy-style results, as well as detailed parameterized complexity landscapes. Recently, this lead to a novel result establishing that for the measure treewidth, which captures structural density of a program, the evaluation of the well-known class of normal programs is expected to be slightly harder than deciding satisfiability (SAT). However, it is unclear how to utilize this structural power of ASP. This paper deals with a novel reduction from SAT to normal ASP that goes beyond well-known encodings: We explicitly utilize the structural power of ASP, whereby we sublinearly decrease the treewidth, which probably cannot be significantly improved. Then, compared to existing results, this characterizes hardness in a fine-grained way by establishing the required functional dependency of the dependency graph's cycle length (SCC size) on the treewidth.
Abstract:Answer Set Programming (ASP) is a paradigm for modeling and solving problems for knowledge representation and reasoning. There are plenty of results dedicated to studying the hardness of (fragments of) ASP. So far, these studies resulted in characterizations in terms of computational complexity as well as in fine-grained insights presented in form of dichotomy-style results, lower bounds when translating to other formalisms like propositional satisfiability (SAT), and even detailed parameterized complexity landscapes. A generic parameter in parameterized complexity originating from graph theory is the so-called treewidth, which in a sense captures structural density of a program. Recently, there was an increase in the number of treewidth-based solvers related to SAT. While there are translations from (normal) ASP to SAT, no reduction that preserves treewidth or at least keeps track of the treewidth increase is known. In this paper we propose a novel reduction from normal ASP to SAT that is aware of the treewidth, and guarantees that a slight increase of treewidth is indeed sufficient. Further, we show a new result establishing that, when considering treewidth, already the fragment of normal ASP is slightly harder than SAT (under reasonable assumptions in computational complexity). This also confirms that our reduction probably cannot be significantly improved and that the slight increase of treewidth is unavoidable. Finally, we present an empirical study of our novel reduction from normal ASP to SAT, where we compare treewidth upper bounds that are obtained via known decomposition heuristics. Overall, our reduction works better with these heuristics than existing translations.
Abstract:Computer programs, so-called solvers, for solving the well-known Boolean satisfiability problem (Sat) have been improving for decades. Among the reasons, why these solvers are so fast, is the implicit usage of the formula's structural properties during solving. One of such structural indicators is the so-called treewidth, which tries to measure how close a formula instance is to being easy (tree-like). This work focuses on logic-based problems and treewidth-based methods and tools for solving them. Many of these problems are also relevant for knowledge representation and reasoning (KR) as well as artificial intelligence (AI) in general. We present a new type of problem reduction, which is referred to by decomposition-guided (DG). This reduction type forms the basis to solve a problem for quantified Boolean formulas (QBFs) of bounded treewidth that has been open since 2004. The solution of this problem then gives rise to a new methodology for proving precise lower bounds for a range of further formalisms in logic, KR, and AI. Despite the established lower bounds, we implement an algorithm for solving extensions of Sat efficiently, by directly using treewidth. Our implementation is based on finding abstractions of instances, which are then incrementally refined in the process. Thereby, our observations confirm that treewidth is an important measure that should be considered in the design of modern solvers.
Abstract:Extending the popular Answer Set Programming (ASP) paradigm by introspective reasoning capacities has received increasing interest within the last years. Particular attention is given to the formalism of epistemic logic programs (ELPs) where standard rules are equipped with modal operators which allow to express conditions on literals for being known or possible, i.e., contained in all or some answer sets, respectively. ELPs thus deliver multiple collections of answer sets, known as world views. Employing ELPs for reasoning problems so far has mainly been restricted to standard decision problems (complexity analysis) and enumeration (development of systems) of world views. In this paper, we take a next step and contribute to epistemic logic programming in two ways: First, we establish quantitative reasoning for ELPs, where the acceptance of a certain set of literals depends on the number (proportion) of world views that are compatible with the set. Second, we present a novel system that is capable of efficiently solving the underlying counting problems required to answer such quantitative reasoning problems. Our system exploits the graph-based measure treewidth and works by iteratively finding and refining (graph) abstractions of an ELP program. On top of these abstractions, we apply dynamic programming that is combined with utilizing existing search-based solvers like (e)clingo for hard combinatorial subproblems that appear during solving. It turns out that our approach is competitive with existing systems that were introduced recently. This work is under consideration for acceptance in TPLP.
Abstract:Many computational problems in modern society account to probabilistic reasoning, statistics, and combinatorics. A variety of these real-world questions can be solved by representing the question in (Boolean) formulas and associating the number of models of the formula directly with the answer to the question. Since there has been an increasing interest in practical problem solving for model counting over the last years, the Model Counting (MC) Competition was conceived in fall 2019. The competition aims to foster applications, identify new challenging benchmarks, and to promote new solvers and improve established solvers for the model counting problem and versions thereof. We hope that the results can be a good indicator of the current feasibility of model counting and spark many new applications. In this paper, we report on details of the Model Counting Competition 2020, about carrying out the competition, and the results. The competition encompassed three versions of the model counting problem, which we evaluated in separate tracks. The first track featured the model counting problem (MC), which asks for the number of models of a given Boolean formula. On the second track, we challenged developers to submit programs that solve the weighted model counting problem (WMC). The last track was dedicated to projected model counting (PMC). In total, we received a surprising number of 9 solvers in 34 versions from 8 groups.
Abstract:The Steiner tree problem is a well-known problem in network design, routing, and VLSI design. Given a graph, edge costs, and a set of dedicated vertices (terminals), the Steiner tree problem asks to output a sub-graph that connects all terminals at minimum cost. A state-of-the-art algorithm to solve the Steiner tree problem by means of dynamic programming is the Dijkstra-Steiner algorithm. The algorithm builds a Steiner tree of the entire instance by systematically searching for smaller instances, based on subsets of the terminals, and combining Steiner trees for these smaller instances. The search heavily relies on a guiding heuristic function in order to prune the search space. However, to ensure correctness, this algorithm allows only for limited heuristic functions, namely, those that satisfy a so-called consistency condition. In this paper, we enhance the Dijkstra-Steiner algorithm and establish a revisited algorithm, called DS*. The DS* algorithm allows for arbitrary lower bounds as heuristics relaxing the previous condition on the heuristic function. Notably, we can now use linear programming based lower bounds. Further, we capture new requirements for a heuristic function in a condition, which we call admissibility. We show that admissibility is indeed weaker than consistency and establish correctness of the DS* algorithm when using an admissible heuristic function. We implement DS* and combine it with modern preprocessing, resulting in an open-source solver (DS* Solve). Finally, we compare its performance on standard benchmarks and observe a competitive behavior.