Abstract:This paper proposes a deep learning framework for classification of BBC television programmes using audio. The audio is firstly transformed into spectrograms, which are fed into a pre-trained convolutional Neural Network (CNN), obtaining predicted probabilities of sound events occurring in the audio recording. Statistics for the predicted probabilities and detected sound events are then calculated to extract discriminative features representing the television programmes. Finally, the embedded features extracted are fed into a classifier for classifying the programmes into different genres. Our experiments are conducted over a dataset of 6,160 programmes belonging to nine genres labelled by the BBC. We achieve an average classification accuracy of 93.7% over 14-fold cross validation. This demonstrates the efficacy of the proposed framework for the task of audio-based classification of television programmes.
Abstract:Energy disaggregation, a.k.a. Non-Intrusive Load Monitoring, aims to separate the energy consumption of individual appliances from the readings of a mains power meter measuring the total energy consumption of, e.g. a whole house. Energy consumption of individual appliances can be useful in many applications, e.g., providing appliance-level feedback to the end users to help them understand their energy consumption and ultimately save energy. Recently, with the availability of large-scale energy consumption datasets, various neural network models such as convolutional neural networks and recurrent neural networks have been investigated to solve the energy disaggregation problem. Neural network models can learn complex patterns from large amounts of data and have been shown to outperform the traditional machine learning methods such as variants of hidden Markov models. However, current neural network methods for energy disaggregation are either computational expensive or are not capable of handling long-term dependencies. In this paper, we investigate the application of the recently developed WaveNet models for the task of energy disaggregation. Based on a real-world energy dataset collected from 20 households over two years, we show that WaveNet models outperforms the state-of-the-art deep learning methods proposed in the literature for energy disaggregation in terms of both error measures and computational cost. On the basis of energy disaggregation, we then investigate the performance of two deep-learning based frameworks for the task of on/off detection which aims at estimating whether an appliance is in operation or not. Based on the same dataset, we show that for the task of on/off detection the second framework, i.e., directly training a binary classifier, achieves better performance in terms of F1 score.