Abstract:Graph self-supervised learning has sparked a research surge in training informative representations without accessing any labeled data. However, our understanding of graph self-supervised learning remains limited, and the inherent relationships between various self-supervised tasks are still unexplored. Our paper aims to provide a fresh understanding of graph self-supervised learning based on task correlations. Specifically, we evaluate the performance of the representations trained by one specific task on other tasks and define correlation values to quantify task correlations. Through this process, we unveil the task correlations between various self-supervised tasks and can measure their expressive capabilities, which are closely related to downstream performance. By analyzing the correlation values between tasks across various datasets, we reveal the complexity of task correlations and the limitations of existing multi-task learning methods. To obtain more capable representations, we propose Graph Task Correlation Modeling (GraphTCM) to illustrate the task correlations and utilize it to enhance graph self-supervised training. The experimental results indicate that our method significantly outperforms existing methods across various downstream tasks.
Abstract:Time-series data presents limitations stemming from data quality issues, bias and vulnerabilities, and generalization problem. Integrating universal data synthesis methods holds promise in improving generalization. However, current methods cannot guarantee that the generator's output covers all unseen real data. In this paper, we introduce InfoBoost -- a highly versatile cross-domain data synthesizing framework with time series representation learning capability. We have developed a method based on synthetic data that enables model training without the need for real data, surpassing the performance of models trained with real data. Additionally, we have trained a universal feature extractor based on our synthetic data that is applicable to all time-series data. Our approach overcomes interference from multiple sources rhythmic signal, noise interference, and long-period features that exceed sampling window capabilities. Through experiments, our non-deep-learning synthetic data enables models to achieve superior reconstruction performance and universal explicit representation extraction without the need for real data.