Abstract:Pathogenic chromosome abnormalities are very common among the general population. While numerical chromosome abnormalities can be quickly and precisely detected, structural chromosome abnormalities are far more complex and typically require considerable efforts by human experts for identification. This paper focuses on investigating the modeling of chromosome features and the identification of chromosomes with structural abnormalities. Most existing data-driven methods concentrate on a single chromosome and consider each chromosome independently, overlooking the crucial aspect of homologous chromosomes. In normal cases, homologous chromosomes share identical structures, with the exception that one of them is abnormal. Therefore, we propose an adaptive method to align homologous chromosomes and diagnose structural abnormalities through homologous similarity. Inspired by the process of human expert diagnosis, we incorporate information from multiple pairs of homologous chromosomes simultaneously, aiming to reduce noise disturbance and improve prediction performance. Extensive experiments on real-world datasets validate the effectiveness of our model compared to baselines.
Abstract:Time-series data presents limitations stemming from data quality issues, bias and vulnerabilities, and generalization problem. Integrating universal data synthesis methods holds promise in improving generalization. However, current methods cannot guarantee that the generator's output covers all unseen real data. In this paper, we introduce InfoBoost -- a highly versatile cross-domain data synthesizing framework with time series representation learning capability. We have developed a method based on synthetic data that enables model training without the need for real data, surpassing the performance of models trained with real data. Additionally, we have trained a universal feature extractor based on our synthetic data that is applicable to all time-series data. Our approach overcomes interference from multiple sources rhythmic signal, noise interference, and long-period features that exceed sampling window capabilities. Through experiments, our non-deep-learning synthetic data enables models to achieve superior reconstruction performance and universal explicit representation extraction without the need for real data.