Abstract:Recently, image-to-3D approaches have significantly advanced the generation quality and speed of 3D assets based on large reconstruction models, particularly 3D Gaussian reconstruction models. Existing large 3D Gaussian models directly map 2D image to 3D Gaussian parameters, while regressing 2D image to 3D Gaussian representations is challenging without 3D priors. In this paper, we propose a large Point-to-Gaussian model, that inputs the initial point cloud produced from large 3D diffusion model conditional on 2D image to generate the Gaussian parameters, for image-to-3D generation. The point cloud provides initial 3D geometry prior for Gaussian generation, thus significantly facilitating image-to-3D Generation. Moreover, we present the \textbf{A}ttention mechanism, \textbf{P}rojection mechanism, and \textbf{P}oint feature extractor, dubbed as \textbf{APP} block, for fusing the image features with point cloud features. The qualitative and quantitative experiments extensively demonstrate the effectiveness of the proposed approach on GSO and Objaverse datasets, and show the proposed method achieves state-of-the-art performance.
Abstract:Invertible Rescaling Networks (IRNs) and their variants have witnessed remarkable achievements in various image processing tasks like image rescaling. However, we observe that IRNs with deeper networks are difficult to train, thus hindering the representational ability of IRNs. To address this issue, we propose Invertible Residual Rescaling Models (IRRM) for image rescaling by learning a bijection between a high-resolution image and its low-resolution counterpart with a specific distribution. Specifically, we propose IRRM to build a deep network, which contains several Residual Downscaling Modules (RDMs) with long skip connections. Each RDM consists of several Invertible Residual Blocks (IRBs) with short connections. In this way, RDM allows rich low-frequency information to be bypassed by skip connections and forces models to focus on extracting high-frequency information from the image. Extensive experiments show that our IRRM performs significantly better than other state-of-the-art methods with much fewer parameters and complexity. Particularly, our IRRM has respectively PSNR gains of at least 0.3 dB over HCFlow and IRN in the $\times 4$ rescaling while only using 60\% parameters and 50\% FLOPs. The code will be available at https://github.com/THU-Kingmin/IRRM.
Abstract:The objective of this study is to investigate the efficient determination of $C$ and $\gamma$ for Support Vector Regression with RBF or mahalanobis kernel based on numerical and statistician considerations, which indicates the connection between $C$ and kernels and demonstrates that the deviation of geometric distance of neighbour observation in mapped space effects the predict accuracy of $\epsilon$-SVR. We determinate the arrange of $\gamma$ & $C$ and propose our method to choose their best values.