Abstract:The increasing size and complexity of machine learning (ML) models have driven the growing need for custom hardware accelerators capable of efficiently supporting ML workloads. However, the design of such accelerators remains a time-consuming process, heavily relying on engineers to manually ensure design interpretability through clear documentation and effective communication. Recent advances in large language models (LLMs) offer a promising opportunity to automate these design interpretability tasks, particularly the generation of natural language descriptions for register-transfer level (RTL) code, what we refer to as "RTL-to-NL tasks." In this paper, we examine how design interpretability, particularly in RTL-to-NL tasks, influences the efficiency of the hardware design process. We review existing work adapting LLMs for these tasks, highlight key challenges that remain unaddressed, including those related to data, computation, and model development, and identify opportunities to address them. By doing so, we aim to guide future research in leveraging ML to automate RTL-to-NL tasks and improve hardware design interpretability, thereby accelerating the hardware design process and meeting the increasing demand for custom hardware accelerators in machine learning and beyond.
Abstract:Deep neural networks are not resilient to parameter corruptions: even a single-bitwise error in their parameters in memory can cause an accuracy drop of over 10%, and in the worst cases, up to 99%. This susceptibility poses great challenges in deploying models on computing platforms, where adversaries can induce bit-flips through software or bitwise corruptions may occur naturally. Most prior work addresses this issue with hardware or system-level approaches, such as integrating additional hardware components to verify a model's integrity at inference. However, these methods have not been widely deployed as they require infrastructure or platform-wide modifications. In this paper, we propose a new approach to addressing this issue: training models to be more resilient to bitwise corruptions to their parameters. Our approach, Hessian-aware training, promotes models with $flatter$ loss surfaces. We show that, while there have been training methods, designed to improve generalization through Hessian-based approaches, they do not enhance resilience to parameter corruptions. In contrast, models trained with our method demonstrate increased resilience to parameter corruptions, particularly with a 20$-$50% reduction in the number of bits whose individual flipping leads to a 90$-$100% accuracy drop. Moreover, we show the synergy between ours and existing hardware and system-level defenses.
Abstract:Kolmogorov-Arnold Networks (KAN) are a new class of neural network architecture representing a promising alternative to the Multilayer Perceptron (MLP), demonstrating improved expressiveness and interpretability. However, KANs suffer from slow training and inference speeds relative to MLPs due in part to the recursive nature of the underlying B-spline calculations. This issue is particularly apparent with respect to KANs utilizing high-degree B-splines, as the number of required non-parallelizable recursions is proportional to B-spline degree. We solve this issue by proposing MatrixKAN, a novel optimization that parallelizes B-spline calculations with matrix representation and operations, thus significantly improving effective computation time for models utilizing high-degree B-splines. In this paper, we demonstrate the superior scaling of MatrixKAN's computation time relative to B-spline degree. Further, our experiments demonstrate speedups of approximately 40x relative to KAN, with significant additional speedup potential for larger datasets or higher spline degrees.
Abstract:Domain decomposition is a technique used to reduce memory overhead on large neutron transport problems. Currently, the optimal load-balanced processor allocation for these domains is typically determined through small-scale simulations of the problem, which can be time-consuming for researchers and must be repeated anytime a problem input is changed. We propose a Transformer model with a unique 3D input embedding, and input representations designed for domain-decomposed neutron transport problems, which can predict the subdomain computation loads generated by small-scale simulations. We demonstrate that such a model trained on domain-decomposed Small Modular Reactor (SMR) simulations achieves 98.2% accuracy while being able to skip the small-scale simulation step entirely. Tests of the model's robustness on variant fuel assemblies, other problem geometries, and changes in simulation parameters are also discussed.
Abstract:Large Language Models (LLMs) excel in data synthesis but can be inaccurate in domain-specific tasks, which retrieval-augmented generation (RAG) systems address by leveraging user-provided data. However, RAGs require optimization in both retrieval and generation stages, which can affect output quality. In this paper, we present LLM-Ref, a writing assistant tool that aids researchers in writing articles from multiple source documents with enhanced reference synthesis and handling capabilities. Unlike traditional RAG systems that use chunking and indexing, our tool retrieves and generates content directly from text paragraphs. This method facilitates direct reference extraction from the generated outputs, a feature unique to our tool. Additionally, our tool employs iterative response generation, effectively managing lengthy contexts within the language model's constraints. Compared to baseline RAG-based systems, our approach achieves a $3.25\times$ to $6.26\times$ increase in Ragas score, a comprehensive metric that provides a holistic view of a RAG system's ability to produce accurate, relevant, and contextually appropriate responses. This improvement shows our method enhances the accuracy and contextual relevance of writing assistance tools.
Abstract:Ranking passages by prompting a large language model (LLM) can achieve promising performance in modern information retrieval (IR) systems. A common approach is to sort the ranking list by prompting LLMs for pairwise comparison. However, sorting-based methods require consistent comparisons to correctly sort the passages, which we show that LLMs often violate. We identify two kinds of intrinsic inconsistency in LLM-based pairwise comparisons: order inconsistency which leads to conflicting results when switching the passage order, and transitive inconsistency which leads to non-transitive triads among all preference pairs. In this paper, we propose LLM-RankFusion, an LLM-based ranking framework that mitigates these inconsistencies and produces a robust ranking list. LLM-RankFusion mitigates order inconsistency using in-context learning (ICL) to demonstrate order-agnostic comparisons and calibration to estimate the underlying preference probability between two passages. We then address transitive inconsistency by aggregating the ranking results from multiple rankers. In our experiments, we empirically show that LLM-RankFusion can significantly reduce inconsistent pairwise comparison results, and improve the ranking quality by making the final ranking list more robust.
Abstract:A promising approach to preserving model performance in linearized transformers is to employ position-based re-weighting functions. However, state-of-the-art re-weighting functions rely heavily on target sequence lengths, making it difficult or impossible to apply them to autoregressive and simultaneous tasks, where the target and sometimes even the input sequence length are unknown. To address this issue, we propose Learned Proportions (LeaP) and LeaPformers. Our contribution is built on two major components. First, we generalize the dependence on explicit positional representations and sequence lengths into dependence on sequence proportions for re-weighting. Second, we replace static positional representations with dynamic proportions derived via a compact module, enabling more flexible attention concentration patterns. We evaluate LeaPformer against eight representative efficient transformers on the Long-Range Arena benchmark, showing that LeaPformer achieves the best quality-throughput trade-off, as well as LeaPformer to Wikitext-103 autoregressive language modeling and simultaneous speech-to-text translation for two language pairs, achieving competitive results.
Abstract:Large language models (LLMs) have achieved state-of-the-art performance in various language processing tasks, motivating their adoption in simultaneous translation. Current fine-tuning methods to adapt LLMs for simultaneous translation focus on prompting optimization strategies using either data augmentation or prompt structure modifications. However, these methods suffer from several issues, such as an unnecessarily expanded training set, computational inefficiency from dumping the KV cache, increased prompt sizes, or restriction to a single decision policy. To eliminate these issues, we propose a new paradigm in fine-tuning LLMs for simultaneous translation, called SimulMask. It utilizes a novel attention mask technique that models simultaneous translation during fine-tuning by masking attention connections under a desired decision policy. Applying the proposed SimulMask on a Falcon LLM for the IWSLT 2017 dataset, we have observed a significant translation quality improvement compared to state-of-the-art prompting optimization strategies on three language pairs when averaged across four different latency regimes while reducing the computational cost.
Abstract:Tensors play a vital role in machine learning (ML) and often exhibit properties best explored while maintaining high-order. Efficiently performing ML computations requires taking advantage of sparsity, but generalized hardware support is challenging. This paper introduces FLAASH, a flexible and modular accelerator design for sparse tensor contraction that achieves over 25x speedup for a deep learning workload. Our architecture performs sparse high-order tensor contraction by distributing sparse dot products, or portions thereof, to numerous Sparse Dot Product Engines (SDPEs). Memory structure and job distribution can be customized, and we demonstrate a simple approach as a proof of concept. We address the challenges associated with control flow to navigate data structures, high-order representation, and high-sparsity handling. The effectiveness of our approach is demonstrated through various evaluations, showcasing significant speedup as sparsity and order increase.
Abstract:Large language models (LLMs) with billions of parameters and pretrained on massive amounts of data are now capable of near or better than state-of-the-art performance in a variety of downstream natural language processing tasks. Neural machine translation (NMT) is one such task that LLMs have been applied to with great success. However, little research has focused on applying LLMs to the more difficult subset of NMT called simultaneous translation (SimulMT), where translation begins before the entire source context is available to the model. In this paper, we address key challenges facing LLMs fine-tuned for SimulMT, validate classical SimulMT concepts and practices in the context of LLMs, explore adapting LLMs that are fine-tuned for NMT to the task of SimulMT, and introduce Simul-LLM, the first open-source fine-tuning and evaluation pipeline development framework for LLMs focused on SimulMT.