Abstract:Deep learning techniques have made an increasing impact on the field of remote sensing. However, deep neural networks based fusion of multimodal data from different remote sensors with heterogenous characteristics has not been fully explored, due to the lack of availability of big amounts of perfectly aligned multi-sensor image data with diverse scenes of high resolution, especially for synthetic aperture radar (SAR) data and optical imagery. In this paper, we publish the QXS-SAROPT dataset to foster deep learning research in SAR-optical data fusion. QXS-SAROPT comprises 20,000 pairs of corresponding image patches, collected from three port cities: San Diego, Shanghai and Qingdao acquired by the SAR satellite GaoFen-3 and optical satellites of Google Earth. Besides a detailed description of the dataset, we show exemplary results for two representative applications, namely SAR-optical image matching and SAR ship detection boosted by cross-modal information from optical images. Since QXS-SAROPT is a large open dataset with multiple scenes of the highest resolution of this kind, we believe it will support further developments in the field of deep learning based SAR-optical data fusion for remote sensing.
Abstract:With the growth of interest in the attack and defense of deep neural networks, researchers are focusing more on the robustness of applying them to devices with limited memory. Thus, unlike adversarial training, which only considers the balance between accuracy and robustness, we come to a more meaningful and critical issue, i.e., the balance among accuracy, efficiency and robustness (AER). Recently, some related works focused on this issue, but with different observations, and the relations among AER remain unclear. This paper first investigates the robustness of pruned models with different compression ratios under the gradual pruning process and concludes that the robustness of the pruned model drastically varies with different pruning processes, especially in response to attacks with large strength. Second, we test the performance of mixing the clean data and adversarial examples (generated with a prescribed uniform budget) into the gradual pruning process, called adversarial pruning, and find the following: the pruned model's robustness exhibits high sensitivity to the budget. Furthermore, to better balance the AER, we propose an approach called blind adversarial pruning (BAP), which introduces the idea of blind adversarial training into the gradual pruning process. The main idea is to use a cutoff-scale strategy to adaptively estimate a nonuniform budget to modify the AEs used during pruning, thus ensuring that the strengths of AEs are dynamically located within a reasonable range at each pruning step and ultimately improving the overall AER of the pruned model. The experimental results obtained using BAP for pruning classification models based on several benchmarks demonstrate the competitive performance of this method: the robustness of the model pruned by BAP is more stable among varying pruning processes, and BAP exhibits better overall AER than adversarial pruning.