Abstract:In the paradigm of decentralized learning, a group of agents collaborate to learn a global model using a distributed dataset without a central server; nevertheless, it is severely challenged by the heterogeneity of the data distribution across the agents. For example, the data may be distributed non-independently and identically, and even be noised or poisoned. To address these data challenges, we propose ROSS, a novel robust decentralized stochastic learning algorithm based on Shapley values, in this paper. Specifically, in each round, each agent aggregates the cross-gradient information from its neighbors, i.e., the derivatives of its local model with respect to the datasets of its neighbors, to update its local model in a momentum like manner, while we innovate in weighting the derivatives according to their contributions measured by Shapley values. We perform solid theoretical analysis to reveal the linear convergence speedup of our ROSS algorithm. We also verify the efficacy of our algorithm through extensive experiments on public datasets. Our results demonstrate that, in face of the above variety of data challenges, our ROSS algorithm have oblivious advantages over existing state-of-the-art proposals in terms of both convergence and prediction accuracy.
Abstract:Continual learning (CL) has garnered significant attention because of its ability to adapt to new tasks that arrive over time. Catastrophic forgetting (of old tasks) has been identified as a major issue in CL, as the model adapts to new tasks. The Mixture-of-Experts (MoE) model has recently been shown to effectively mitigate catastrophic forgetting in CL, by employing a gating network to sparsify and distribute diverse tasks among multiple experts. However, there is a lack of theoretical analysis of MoE and its impact on the learning performance in CL. This paper provides the first theoretical results to characterize the impact of MoE in CL via the lens of overparameterized linear regression tasks. We establish the benefit of MoE over a single expert by proving that the MoE model can diversify its experts to specialize in different tasks, while its router learns to select the right expert for each task and balance the loads across all experts. Our study further suggests an intriguing fact that the MoE in CL needs to terminate the update of the gating network after sufficient training rounds to attain system convergence, which is not needed in the existing MoE studies that do not consider the continual task arrival. Furthermore, we provide explicit expressions for the expected forgetting and overall generalization error to characterize the benefit of MoE in the learning performance in CL. Interestingly, adding more experts requires additional rounds before convergence, which may not enhance the learning performance. Finally, we conduct experiments on both synthetic and real datasets to extend these insights from linear models to deep neural networks (DNNs), which also shed light on the practical algorithm design for MoE in CL.
Abstract:Wireless federated learning (WFL) enables devices to collaboratively train a global model via local model training, uploading and aggregating. However, WFL faces the data scarcity/heterogeneity problem (i.e., data are limited and unevenly distributed among devices) that degrades the learning performance. In this regard, artificial intelligence generated content (AIGC) can synthesize various types of data to compensate for the insufficient local data. Nevertheless, downloading synthetic data or uploading local models iteratively takes a lot of time, especially for a large amount of devices. To address this issue, we propose to leverage non-orthogonal multiple access (NOMA) to achieve efficient synthetic data and local model transmission. This paper is the first to combine AIGC and NOMA with WFL to maximally enhance the learning performance. For the proposed NOMA+AIGC-enhanced WFL, the problem of jointly optimizing the synthetic data distribution, two-way communication and computation resource allocation to minimize the global learning error is investigated. The problem belongs to NP-hard mixed integer nonlinear programming, whose optimal solution is intractable to find. We first employ the block coordinate descent method to decouple the complicated-coupled variables, and then resort to our analytical method to derive an efficient low-complexity local optimal solution with partial closed-form results. Extensive simulations validate the superiority of the proposed scheme compared to the existing and benchmark schemes such as the frequency/time division multiple access based AIGC-enhanced schemes.
Abstract:Rate splitting multiple access (RSMA) provides a flexible transmission framework that can be applied in mobile edge computing (MEC) systems. However, the research work on RSMA-assisted MEC systems is still at the infancy and many design issues remain unsolved, such as the MEC server and channel allocation problem in general multi-server and multi-channel scenarios as well as the user fairness issues. In this regard, we study an RSMA-assisted MEC system with multiple MEC servers, channels and devices, and consider the fairness among devices. A max-min fairness computation offloading problem to maximize the minimum computation offloading rate is investigated. Since the problem is difficult to solve optimally, we develop an efficient algorithm to obtain a suboptimal solution. Particularly, the time allocation and the computing frequency allocation are derived as closed-form functions of the transmit power allocation and the successive interference cancellation (SIC) decoding order, while the SIC decoding order is obtained heuristically, and the bisection search and the successive convex approximation methods are employed to optimize the transmit power allocation. For the MEC server and channel allocation problem, we transform it into a hypergraph matching problem and solve it by matching theory. Simulation results demonstrate that the proposed RSMA-assisted MEC system outperforms current MEC systems under various system setups.
Abstract:Today mobile users learn and share their traffic observations via crowdsourcing platforms (e.g., Waze). Yet such platforms simply cater to selfish users' myopic interests to recommend the shortest path, and do not encourage enough users to travel and learn other paths for future others. Prior studies focus on one-shot congestion games without considering users' information learning, while our work studies how users learn and alter traffic conditions on stochastic paths in a human-in-the-loop manner. Our analysis shows that the myopic routing policy leads to severe under-exploration of stochastic paths. This results in a price of anarchy (PoA) greater than $2$, as compared to the socially optimal policy in minimizing the long-term social cost. Besides, the myopic policy fails to ensure the correct learning convergence about users' traffic hazard beliefs. To address this, we focus on informational (non-monetary) mechanisms as they are easier to implement than pricing. We first show that existing information-hiding mechanisms and deterministic path-recommendation mechanisms in Bayesian persuasion literature do not work with even (\text{PoA}=\infty). Accordingly, we propose a new combined hiding and probabilistic recommendation (CHAR) mechanism to hide all information from a selected user group and provide state-dependent probabilistic recommendations to the other user group. Our CHAR successfully ensures PoA less than (\frac{5}{4}), which cannot be further reduced by any other informational (non-monetary) mechanism. Besides the parallel network, we further extend our analysis and CHAR to more general linear path graphs with multiple intermediate nodes, and we prove that the PoA results remain unchanged. Additionally, we carry out experiments with real-world datasets to further extend our routing graphs and verify the close-to-optimal performance of our CHAR.
Abstract:Although the uncertainties of the workers can be addressed by the standard Combinatorial Multi-Armed Bandit (CMAB) framework in existing proposals through a trade-off between exploration and exploitation, we may not have sufficient budget to enable the trade-off among the individual workers, especially when the number of the workers is huge while the budget is limited. Moreover, the standard CMAB usually assumes the workers always stay in the system, whereas the workers may join in or depart from the system over time, such that what we have learnt for an individual worker cannot be applied after the worker leaves. To address the above challenging issues, in this paper, we first propose an off-line Context-Aware CMAB-based Incentive (CACI) mechanism. We innovate in leveraging the exploration-exploitation trade-off in a elaborately partitioned context space instead of the individual workers, to effectively incentivize the massive unknown workers with very limited budget. We also extend the above basic idea to the on-line setting where unknown workers may join in or depart from the systems dynamically, and propose an on-line version of the CACI mechanism. Specifically, by the exploitation-exploration trade-off in the context space, we learn to estimate the sensing ability of any unknown worker (even it never appeared in the system before) according to its context information. We perform rigorous theoretical analysis to reveal the upper bounds on the regrets of our CACI mechanisms and to prove their truthfulness and individual rationality, respectively. Extensive experiments on both synthetic and real datasets are also conducted to verify the efficacy of our mechanisms.
Abstract:Unmanned aerial vehicle (UAV) network is a promising technology for assisting Internet-of-Things (IoT), where a UAV can use its limited service coverage to harvest and disseminate data from IoT devices with low transmission abilities. The existing UAV-assisted data harvesting and dissemination schemes largely require UAVs to frequently fly between the IoTs and access points, resulting in extra energy and time costs. To reduce both energy and time costs, a key way is to enhance the transmission performance of IoT and UAVs. In this work, we introduce collaborative beamforming into IoTs and UAVs simultaneously to achieve energy and time-efficient data harvesting and dissemination from multiple IoT clusters to remote base stations (BSs). Except for reducing these costs, another non-ignorable threat lies in the existence of the potential eavesdroppers, whereas the handling of eavesdroppers often increases the energy and time costs, resulting in a conflict with the minimization of the costs. Moreover, the importance of these goals may vary relatively in different applications. Thus, we formulate a multi-objective optimization problem (MOP) to simultaneously minimize the mission completion time, signal strength towards the eavesdropper, and total energy cost of the UAVs. We prove that the formulated MOP is an NP-hard, mixed-variable optimization, and large-scale optimization problem. Thus, we propose a swarm intelligence-based algorithm to find a set of candidate solutions with different trade-offs which can meet various requirements in a low computational complexity. We also show that swarm intelligence methods need to enhance solution initialization, solution update, and algorithm parameter update phases when dealing with mixed-variable optimization and large-scale problems. Simulation results demonstrate the proposed algorithm outperforms state-of-the-art swarm intelligence algorithms.
Abstract:Federated Learning (FL) has recently emerged as a popular framework, which allows resource-constrained discrete clients to cooperatively learn the global model under the orchestration of a central server while storing privacy-sensitive data locally. However, due to the difference in equipment and data divergence of heterogeneous clients, there will be parameter deviation between local models, resulting in a slow convergence rate and a reduction of the accuracy of the global model. The current FL algorithms use the static client learning strategy pervasively and can not adapt to the dynamic training parameters of different clients. In this paper, by considering the deviation between different local model parameters, we propose an adaptive learning rate scheme for each client based on entropy theory to alleviate the deviation between heterogeneous clients and achieve fast convergence of the global model. It's difficult to design the optimal dynamic learning rate for each client as the local information of other clients is unknown, especially during the local training epochs without communications between local clients and the central server. To enable a decentralized learning rate design for each client, we first introduce mean-field schemes to estimate the terms related to other clients' local model parameters. Then the decentralized adaptive learning rate for each client is obtained in closed form by constructing the Hamilton equation. Moreover, we prove that there exist fixed point solutions for the mean-field estimators, and an algorithm is proposed to obtain them. Finally, extensive experimental results on real datasets show that our algorithm can effectively eliminate the deviation between local model parameters compared to other recent FL algorithms.
Abstract:In federated learning (FL), clients cooperatively train a global model without revealing their raw data but gradients or parameters, while the local information can still be disclosed from local outputs transmitted to the parameter server. With such privacy concerns, a client may overly add artificial noise to his local updates to compromise the global model training, and we prove the selfish noise adding leads to an infinite price of anarchy (PoA). This paper proposes a novel pricing mechanism to regulate privacy-sensitive clients without verifying their parameter updates, unlike existing privacy mechanisms that assume the server's full knowledge of added noise. Without knowing the ground truth, our mechanism reaches the social optimum to best balance the global training error and privacy loss, according to the difference between a client's updated parameter and all clients' average parameter. We also improve the FL convergence bound by refining the aggregation rule at the server to account for different clients' noise variances. Moreover, we extend our pricing scheme to fit incomplete information of clients' privacy sensitivities, ensuring their truthful type reporting and the system's ex-ante budget balance. Simulations show that our pricing scheme greatly improves the system performance especially when clients have diverse privacy sensitivities.
Abstract:Due to its mobility and agility, unmanned aerial vehicle (UAV) has emerged as a promising technology for various tasks, such as sensing, inspection and delivery. However, a typical UAV has limited energy storage and cannot fly a long distance without being recharged. This motivates several existing proposals to use trucks and other ground vehicles to offer riding to help UAVs save energy and expand the operation radius. We present the first theoretical study regarding how UAVs should optimally hitch on ground vehicles, considering vehicles' different travelling patterns and supporting capabilities. For a single UAV, we derive closed-form optimal vehicle selection and hitching strategy. When vehicles only support hitching, a UAV would prefer the vehicle that can carry it closest to its final destination. When vehicles can offer hitching plus charging, the UAV may hitch on a vehicle that carries it farther away from its destination and hitch a longer distance. The UAV may also prefer to hitch on a slower vehicle for the benefit of battery recharging. For multiple UAVs in need of hitching, we develop the max-saving algorithm (MSA) to optimally match UAV-vehicle collaboration. We prove that the MSA globally optimizes the total hitching benefits for the UAVs.