Abstract:Interpretability is a key challenge in fostering trust for Large Language Models (LLMs), which stems from the complexity of extracting reasoning from model's parameters. We present the Frame Representation Hypothesis, a theoretically robust framework grounded in the Linear Representation Hypothesis (LRH) to interpret and control LLMs by modeling multi-token words. Prior research explored LRH to connect LLM representations with linguistic concepts, but was limited to single token analysis. As most words are composed of several tokens, we extend LRH to multi-token words, thereby enabling usage on any textual data with thousands of concepts. To this end, we propose words can be interpreted as frames, ordered sequences of vectors that better capture token-word relationships. Then, concepts can be represented as the average of word frames sharing a common concept. We showcase these tools through Top-k Concept-Guided Decoding, which can intuitively steer text generation using concepts of choice. We verify said ideas on Llama 3.1, Gemma 2, and Phi 3 families, demonstrating gender and language biases, exposing harmful content, but also potential to remediate them, leading to safer and more transparent LLMs. Code is available at https://github.com/phvv-me/frame-representation-hypothesis.git
Abstract:This paper addresses the problem of object recognition given a set of images as input (e.g., multiple camera sources and video frames). Convolutional neural network (CNN)-based frameworks do not exploit these sets effectively, processing a pattern as observed, not capturing the underlying feature distribution as it does not consider the variance of images in the set. To address this issue, we propose the Grassmannian learning mutual subspace method (G-LMSM), a NN layer embedded on top of CNNs as a classifier, that can process image sets more effectively and can be trained in an end-to-end manner. The image set is represented by a low-dimensional input subspace; and this input subspace is matched with reference subspaces by a similarity of their canonical angles, an interpretable and easy to compute metric. The key idea of G-LMSM is that the reference subspaces are learned as points on the Grassmann manifold, optimized with Riemannian stochastic gradient descent. This learning is stable, efficient and theoretically well-grounded. We demonstrate the effectiveness of our proposed method on hand shape recognition, face identification, and facial emotion recognition.
Abstract:Text classification has become indispensable due to the rapid increase of text in digital form. Over the past three decades, efforts have been made to approach this task using various learning algorithms and statistical models based on bag-of-words (BOW) features. Despite its simple implementation, BOW features lack semantic meaning representation. To solve this problem, neural networks started to be employed to learn word vectors, such as the word2vec. Word2vec embeds word semantic structure into vectors, where the angle between vectors indicates the meaningful similarity between words. To measure the similarity between texts, we propose the novel concept of word subspace, which can represent the intrinsic variability of features in a set of word vectors. Through this concept, it is possible to model text from word vectors while holding semantic information. To incorporate the word frequency directly in the subspace model, we further extend the word subspace to the term-frequency (TF) weighted word subspace. Based on these new concepts, text classification can be performed under the mutual subspace method (MSM) framework. The validity of our modeling is shown through experiments on the Reuters text database, comparing the results to various state-of-art algorithms.