Abstract:Molecular relational learning (MRL) is crucial for understanding the interaction behaviors between molecular pairs, a critical aspect of drug discovery and development. However, the large feasible model space of MRL poses significant challenges to benchmarking, and existing MRL frameworks face limitations in flexibility and scope. To address these challenges, avoid repetitive coding efforts, and ensure fair comparison of models, we introduce FlexMol, a comprehensive toolkit designed to facilitate the construction and evaluation of diverse model architectures across various datasets and performance metrics. FlexMol offers a robust suite of preset model components, including 16 drug encoders, 13 protein sequence encoders, 9 protein structure encoders, and 7 interaction layers. With its easy-to-use API and flexibility, FlexMol supports the dynamic construction of over 70, 000 distinct combinations of model architectures. Additionally, we provide detailed benchmark results and code examples to demonstrate FlexMol's effectiveness in simplifying and standardizing MRL model development and comparison.
Abstract:Molecular property prediction (MPP) is a crucial task in the drug discovery pipeline, which has recently gained considerable attention thanks to advances in deep neural networks. However, recent research has revealed that deep models struggle to beat traditional non-deep ones on MPP. In this study, we benchmark 12 representative models (3 non-deep models and 9 deep models) on 14 molecule datasets. Through the most comprehensive study to date, we make the following key observations: \textbf{(\romannumeral 1)} Deep models are generally unable to outperform non-deep ones; \textbf{(\romannumeral 2)} The failure of deep models on MPP cannot be solely attributed to the small size of molecular datasets. What matters is the irregular molecule data pattern; \textbf{(\romannumeral 3)} In particular, tree models using molecular fingerprints as inputs tend to perform better than other competitors. Furthermore, we conduct extensive empirical investigations into the unique patterns of molecule data and inductive biases of various models underlying these phenomena.