Abstract:Comparing bridging annotations across coreference resources is difficult, largely due to a lack of standardization across definitions and annotation schemas and narrow coverage of disparate text domains across resources. To alleviate domain coverage issues and consolidate schemas, we compare guidelines and use interpretable predictive models to examine the bridging instances annotated in the GUM, GENTLE and ARRAU corpora. Examining these cases, we find that there is a large difference in types of phenomena annotated as bridging. Beyond theoretical results, we release a harmonized, subcategorized version of the test sets of GUM, GENTLE and the ARRAU Wall Street Journal data to promote meaningful and reliable evaluation of bridging resolution across domains.
Abstract:Ancient manuscripts are frequently damaged, containing gaps in the text known as lacunae. In this paper, we present a bidirectional RNN model for character prediction of Coptic characters in manuscript lacunae. Our best model performs with 72% accuracy on single character reconstruction, but falls to 37% when reconstructing lacunae of various lengths. While not suitable for definitive manuscript reconstruction, we argue that our RNN model can help scholars rank the likelihood of textual reconstructions. As evidence, we use our RNN model to rank reconstructions in two early Coptic manuscripts. Our investigation shows that neural models can augment traditional methods of textual restoration, providing scholars with an additional tool to assess lacunae in Coptic manuscripts.
Abstract:We present GENTLE, a new mixed-genre English challenge corpus totaling 17K tokens and consisting of 8 unusual text types for out-of domain evaluation: dictionary entries, esports commentaries, legal documents, medical notes, poetry, mathematical proofs, syllabuses, and threat letters. GENTLE is manually annotated for a variety of popular NLP tasks, including syntactic dependency parsing, entity recognition, coreference resolution, and discourse parsing. We evaluate state-of-the-art NLP systems on GENTLE and find severe degradation for at least some genres in their performance on all tasks, which indicates GENTLE's utility as an evaluation dataset for NLP systems.