Abstract:Predicting case criticality helps legal professionals in the court system manage large volumes of case law. This paper introduces the Criticality Prediction dataset, a new resource for evaluating the potential influence of Swiss Federal Supreme Court decisions on future jurisprudence. Unlike existing approaches that rely on resource-intensive manual annotations, we semi-automatically derive labels leading to a much larger dataset than otherwise possible. Our dataset features a two-tier labeling system: (1) the LD-Label, which identifies cases published as Leading Decisions (LD), and (2) the Citation-Label, which ranks cases by their citation frequency and recency. This allows for a more nuanced evaluation of case importance. We evaluate several multilingual models, including fine-tuned variants and large language models, and find that fine-tuned models consistently outperform zero-shot baselines, demonstrating the need for task-specific adaptation. Our contributions include the introduction of this task and the release of a multilingual dataset to the research community.
Abstract:Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.