Abstract:In this paper, we present a new framework for reducing the computational complexity of geometric vision problems through targeted reweighting of the cost functions used to minimize reprojection errors. Triangulation - the task of estimating a 3D point from noisy 2D projections across multiple images - is a fundamental problem in multiview geometry and Structure-from-Motion (SfM) pipelines. We apply our framework to the two-view case and demonstrate that optimal triangulation, which requires solving a univariate polynomial of degree six, can be simplified through cost function reweighting reducing the polynomial degree to two. This reweighting yields a closed-form solution while preserving strong geometric accuracy. We derive optimal weighting strategies, establish theoretical bounds on the approximation error, and provide experimental results on real data demonstrating the effectiveness of the proposed approach compared to standard methods. Although this work focuses on two-view triangulation, the framework generalizes to other geometric vision problems.
Abstract:We completely classify all minimal problems for Structure-from-Motion (SfM) where arrangements of points and lines are fully observed by multiple uncalibrated pinhole cameras. We find 291 minimal problems, 73 of which have unique solutions and can thus be solved linearly. Two of the linear problems allow an arbitrary number of views, while all other minimal problems have at most 9 cameras. All minimal problems have at most 7 points and at most 12 lines. We compute the number of solutions of each minimal problem, as this gives a measurement of the problem's intrinsic difficulty, and find that these number are relatively low (e.g., when comparing with minimal problems for calibrated cameras). Finally, by exploring stabilizer subgroups of subarrangements, we develop a geometric and systematic way to 1) factorize minimal problems into smaller problems, 2) identify minimal problems in underconstrained problems, and 3) formally prove non-minimality.
Abstract:In this expository work, we promote the study of function spaces parameterized by machine learning models through the lens of algebraic geometry. To this end, we focus on algebraic models, such as neural networks with polynomial activations, whose associated function spaces are semi-algebraic varieties. We outline a dictionary between algebro-geometric invariants of these varieties, such as dimension, degree, and singularities, and fundamental aspects of machine learning, such as sample complexity, expressivity, training dynamics, and implicit bias. Along the way, we review the literature and discuss ideas beyond the algebraic domain. This work lays the foundations of a research direction bridging algebraic geometry and deep learning, that we refer to as neuroalgebraic geometry.
Abstract:We study convolutional neural networks with monomial activation functions. Specifically, we prove that their parameterization map is regular and is an isomorphism almost everywhere, up to rescaling the filters. By leveraging on tools from algebraic geometry, we explore the geometric properties of the image in function space of this map -- typically referred to as neuromanifold. In particular, we compute the dimension and the degree of the neuromanifold, which measure the expressivity of the model, and describe its singularities. Moreover, for a generic large dataset, we derive an explicit formula that quantifies the number of critical points arising in the optimization of a regression loss.
Abstract:We consider function spaces defined by self-attention networks without normalization, and theoretically analyze their geometry. Since these networks are polynomial, we rely on tools from algebraic geometry. In particular, we study the identifiability of deep attention by providing a description of the generic fibers of the parametrization for an arbitrary number of layers and, as a consequence, compute the dimension of the function space. Additionally, for a single-layer model, we characterize the singular and boundary points. Finally, we formulate a conjectural extension of our results to normalized self-attention networks, prove it for a single layer, and numerically verify it in the deep case.
Abstract:Rolling shutter (RS) cameras dominate consumer and smartphone markets. Several methods for computing the absolute pose of RS cameras have appeared in the last 20 years, but the relative pose problem has not been fully solved yet. We provide a unified theory for the important class of order-one rolling shutter (RS$_1$) cameras. These cameras generalize the perspective projection to RS cameras, projecting a generic space point to exactly one image point via a rational map. We introduce a new back-projection RS camera model, characterize RS$_1$ cameras, construct explicit parameterizations of such cameras, and determine the image of a space line. We classify all minimal problems for solving the relative camera pose problem with linear RS$_1$ cameras and discover new practical cases. Finally, we show how the theory can be used to explain RS models previously used for absolute pose computation.
Abstract:The set of functions parameterized by a linear fully-connected neural network is a determinantal variety. We investigate the subvariety of functions that are equivariant or invariant under the action of a permutation group. Examples of such group actions are translations or $90^\circ$ rotations on images. For such equivariant or invariant subvarieties, we provide an explicit description of their dimension, their degree as well as their Euclidean distance degree, and their singularities. We fully characterize invariance for arbitrary permutation groups, and equivariance for cyclic groups. We draw conclusions for the parameterization and the design of equivariant and invariant linear networks, such as a weight sharing property, and we prove that all invariant linear functions can be learned by linear autoencoders.
Abstract:We study the geometry of linear networks with one-dimensional convolutional layers. The function spaces of these networks can be identified with semi-algebraic families of polynomials admitting sparse factorizations. We analyze the impact of the network's architecture on the function space's dimension, boundary, and singular points. We also describe the critical points of the network's parameterization map. Furthermore, we study the optimization problem of training a network with the squared error loss. We prove that for architectures where all strides are larger than one and generic data, the non-zero critical points of that optimization problem are smooth interior points of the function space. This property is known to be false for dense linear networks and linear convolutional networks with stride one.
Abstract:In this survey article, we present interactions between algebraic geometry and computer vision, which have recently come under the header of Algebraic Vision. The subject has given new insights in multiple view geometry and its application to 3D scene reconstruction, and carried a host of novel problems and ideas back into algebraic geometry.
Abstract:We study the family of functions that are represented by a linear convolutional neural network (LCN). These functions form a semi-algebraic subset of the set of linear maps from input space to output space. In contrast, the families of functions represented by fully-connected linear networks form algebraic sets. We observe that the functions represented by LCNs can be identified with polynomials that admit certain factorizations, and we use this perspective to describe the impact of the network's architecture on the geometry of the resulting function space. We further study the optimization of an objective function over an LCN, analyzing critical points in function space and in parameter space, and describing dynamical invariants for gradient descent. Overall, our theory predicts that the optimized parameters of an LCN will often correspond to repeated filters across layers, or filters that can be decomposed as repeated filters. We also conduct numerical and symbolic experiments that illustrate our results and present an in-depth analysis of the landscape for small architectures.