Abstract:We study convolutional neural networks with monomial activation functions. Specifically, we prove that their parameterization map is regular and is an isomorphism almost everywhere, up to rescaling the filters. By leveraging on tools from algebraic geometry, we explore the geometric properties of the image in function space of this map -- typically referred to as neuromanifold. In particular, we compute the dimension and the degree of the neuromanifold, which measure the expressivity of the model, and describe its singularities. Moreover, for a generic large dataset, we derive an explicit formula that quantifies the number of critical points arising in the optimization of a regression loss.
Abstract:In this paper, we study linear convolutional networks with one-dimensional filters and arbitrary strides. The neuromanifold of such a network is a semialgebraic set, represented by a space of polynomials admitting specific factorizations. Introducing a recursive algorithm, we generate polynomial equations whose common zero locus corresponds to the Zariski closure of the corresponding neuromanifold. Furthermore, we explore the algebraic complexity of training these networks employing tools from metric algebraic geometry. Our findings reveal that the number of all complex critical points in the optimization of such a network is equal to the generic Euclidean distance degree of a Segre variety. Notably, this count significantly surpasses the number of critical points encountered in the training of a fully connected linear network with the same number of parameters.
Abstract:The set of functions parameterized by a linear fully-connected neural network is a determinantal variety. We investigate the subvariety of functions that are equivariant or invariant under the action of a permutation group. Examples of such group actions are translations or $90^\circ$ rotations on images. For such equivariant or invariant subvarieties, we provide an explicit description of their dimension, their degree as well as their Euclidean distance degree, and their singularities. We fully characterize invariance for arbitrary permutation groups, and equivariance for cyclic groups. We draw conclusions for the parameterization and the design of equivariant and invariant linear networks, such as a weight sharing property, and we prove that all invariant linear functions can be learned by linear autoencoders.
Abstract:We study the geometry of linear networks with one-dimensional convolutional layers. The function spaces of these networks can be identified with semi-algebraic families of polynomials admitting sparse factorizations. We analyze the impact of the network's architecture on the function space's dimension, boundary, and singular points. We also describe the critical points of the network's parameterization map. Furthermore, we study the optimization problem of training a network with the squared error loss. We prove that for architectures where all strides are larger than one and generic data, the non-zero critical points of that optimization problem are smooth interior points of the function space. This property is known to be false for dense linear networks and linear convolutional networks with stride one.