Abstract:Effective evaluation of the reasoning capabilities of large language models (LLMs) are susceptible to overestimation due to data exposure of evaluation benchmarks. We introduce a framework for producing linguistic reasoning problems that reduces the effect of memorisation in model performance estimates and apply this framework to develop LINGOLY-TOO, a challenging evaluation benchmark for linguistic reasoning. By developing orthographic templates, we dynamically obfuscate the writing systems of real languages to generate numerous question variations. These variations preserve the reasoning steps required for each solution while reducing the likelihood of specific problem instances appearing in model training data. Our experiments demonstrate that frontier models, including OpenAI o1-preview and DeepSeem R1, struggle with advanced reasoning. Our analysis also shows that LLMs exhibit noticeable variance in accuracy across permutations of the same problem, and on average perform better on questions appearing in their original orthography. Our findings highlight the opaque nature of response generation in LLMs and provide evidence that prior data exposure contributes to overestimating the reasoning capabilities of frontier models.
Abstract:Large Language Models (LLMs) have shown promise in medical question answering by achieving passing scores in standardised exams and have been suggested as tools for supporting healthcare workers. Deploying LLMs into such a high-risk context requires a clear understanding of the limitations of these models. With the rapid development and release of new LLMs, it is especially valuable to identify patterns which exist across models and may, therefore, continue to appear in newer versions. In this paper, we evaluate a wide range of popular LLMs on their knowledge of medical questions in order to better understand their properties as a group. From this comparison, we provide preliminary observations and raise open questions for further research.