Abstract:Thorough analysis of local droplet-level interactions is crucial to better understand the microphysical processes in clouds and their effect on the global climate. High-accuracy simulations of relevant droplet size distributions from Large Eddy Simulations (LES) of bin microphysics challenge current analysis techniques due to their high dimensionality involving three spatial dimensions, time, and a continuous range of droplet sizes. Utilizing the compact latent representations from Variational Autoencoders (VAEs), we produce novel and intuitive visualizations for the organization of droplet sizes and their evolution over time beyond what is possible with clustering techniques. This greatly improves interpretation and allows us to examine aerosol-cloud interactions by contrasting simulations with different aerosol concentrations. We find that the evolution of the droplet spectrum is similar across aerosol levels but occurs at different paces. This similarity suggests that precipitation initiation processes are alike despite variations in onset times.
Abstract:Pyrocumulonimbus (pyroCb) clouds are storm clouds generated by extreme wildfires. PyroCbs are associated with unpredictable, and therefore dangerous, wildfire spread. They can also inject smoke particles and trace gases into the upper troposphere and lower stratosphere, affecting the Earth's climate. As global temperatures increase, these previously rare events are becoming more common. Being able to predict which fires are likely to generate pyroCb is therefore key to climate adaptation in wildfire-prone areas. This paper introduces Pyrocast, a pipeline for pyroCb analysis and forecasting. The pipeline's first two components, a pyroCb database and a pyroCb forecast model, are presented. The database brings together geostationary imagery and environmental data for over 148 pyroCb events across North America, Australia, and Russia between 2018 and 2022. Random Forests, Convolutional Neural Networks (CNNs), and CNNs pretrained with Auto-Encoders were tested to predict the generation of pyroCb for a given fire six hours in advance. The best model predicted pyroCb with an AUC of $0.90 \pm 0.04$.
Abstract:A first causal discovery analysis from observational data of pyroCb (storm clouds generated from extreme wildfires) is presented. Invariant Causal Prediction was used to develop tools to understand the causal drivers of pyroCb formation. This includes a conditional independence test for testing $Y$ conditionally independent of $E$ given $X$ for binary variable $Y$ and multivariate, continuous variables $X$ and $E$, and a greedy-ICP search algorithm that relies on fewer conditional independence tests to obtain a smaller more manageable set of causal predictors. With these tools, we identified a subset of seven causal predictors which are plausible when contrasted with domain knowledge: surface sensible heat flux, relative humidity at $850$ hPa, a component of wind at $250$ hPa, $13.3$ micro-meters, thermal emissions, convective available potential energy, and altitude.