Abstract:Information retrieval is an ever-evolving and crucial research domain. The substantial demand for high-quality human motion data especially in online acquirement has led to a surge in human motion research works. Prior works have mainly concentrated on dual-modality learning, such as text and motion tasks, but three-modality learning has been rarely explored. Intuitively, an extra introduced modality can enrich a model's application scenario, and more importantly, an adequate choice of the extra modality can also act as an intermediary and enhance the alignment between the other two disparate modalities. In this work, we introduce LAVIMO (LAnguage-VIdeo-MOtion alignment), a novel framework for three-modality learning integrating human-centric videos as an additional modality, thereby effectively bridging the gap between text and motion. Moreover, our approach leverages a specially designed attention mechanism to foster enhanced alignment and synergistic effects among text, video, and motion modalities. Empirically, our results on the HumanML3D and KIT-ML datasets show that LAVIMO achieves state-of-the-art performance in various motion-related cross-modal retrieval tasks, including text-to-motion, motion-to-text, video-to-motion and motion-to-video.
Abstract:Federated learning (FL), a privacy-preserving distributed machine learning, has been rapidly applied in wireless communication networks. FL enables Internet of Things (IoT) clients to obtain well-trained models while preventing privacy leakage. Person detection can be deployed on edge devices with limited computing power if combined with FL to process the video data directly at the edge. However, due to the different hardware and deployment scenarios of different cameras, the data collected by the camera present non-independent and identically distributed (non-IID), and the global model derived from FL aggregation is less effective. Meanwhile, existing research lacks public data set for real-world FL object detection, which is not conducive to studying the non-IID problem on IoT cameras. Therefore, we open source a non-IID IoT person detection (NIPD) data set, which is collected from five different cameras. To our knowledge, this is the first true device-based non-IID person detection data set. Based on this data set, we explain how to establish a FL experimental platform and provide a benchmark for non-IID person detection. NIPD is expected to promote the application of FL and the security of smart city.
Abstract:Person search generally involves three important parts: person detection, feature extraction and identity comparison. However, person search integrating detection, extraction and comparison has the following drawbacks. Firstly, the accuracy of detection will affect the accuracy of comparison. Secondly, it is difficult to achieve real-time in real-world applications. To solve these problems, we propose a Multi-task Joint Framework for real-time person search (MJF), which optimizes the person detection, feature extraction and identity comparison respectively. For the person detection module, we proposed the YOLOv5-GS model, which is trained with person dataset. It combines the advantages of the Ghostnet and the Squeeze-and-Excitation (SE) block, and improves the speed and accuracy. For the feature extraction module, we design the Model Adaptation Architecture (MAA), which could select different network according to the number of people. It could balance the relationship between accuracy and speed. For identity comparison, we propose a Three Dimension (3D) Pooled Table and a matching strategy to improve identification accuracy. On the condition of 1920*1080 resolution video and 500 IDs table, the identification rate (IR) and frames per second (FPS) achieved by our method could reach 93.6% and 25.7,