Abstract:Large Language Models (LLMs) are increasingly employed in real-world applications, driving the need to evaluate the trustworthiness of their generated text. To this end, reliable uncertainty estimation is essential. Since current LLMs generate text autoregressively through a stochastic process, the same prompt can lead to varying outputs. Consequently, leading uncertainty estimation methods generate and analyze multiple output sequences to determine the LLM's uncertainty. However, generating output sequences is computationally expensive, making these methods impractical at scale. In this work, we inspect the theoretical foundations of the leading methods and explore new directions to enhance their computational efficiency. Building on the framework of proper scoring rules, we find that the negative log-likelihood of the most likely output sequence constitutes a theoretically grounded uncertainty measure. To approximate this alternative measure, we propose G-NLL, which has the advantage of being obtained using only a single output sequence generated by greedy decoding. This makes uncertainty estimation more efficient and straightforward, while preserving theoretical rigor. Empirical results demonstrate that G-NLL achieves state-of-the-art performance across various LLMs and tasks. Our work lays the foundation for efficient and reliable uncertainty estimation in natural language generation, challenging the necessity of more computationally involved methods currently leading the field.
Abstract:Ensembles of Deep Neural Networks, Deep Ensembles, are widely used as a simple way to boost predictive performance. However, their impact on algorithmic fairness is not well understood yet. Algorithmic fairness investigates how a model's performance varies across different groups, typically defined by protected attributes such as age, gender, or race. In this work, we investigate the interplay between the performance gains from Deep Ensembles and fairness. Our analysis reveals that they unevenly favor different groups in what we refer to as a disparate benefits effect. We empirically investigate this effect with Deep Ensembles applied to popular facial analysis and medical imaging datasets, where protected group attributes are given and find that it occurs for multiple established group fairness metrics, including statistical parity and equal opportunity. Furthermore, we identify the per-group difference in predictive diversity of ensemble members as the potential cause of the disparate benefits effect. Finally, we evaluate different approaches to reduce unfairness due to the disparate benefits effect. Our findings show that post-processing is an effective method to mitigate this unfairness while preserving the improved performance of Deep Ensembles.
Abstract:Reliable estimation of predictive uncertainty is crucial for machine learning applications, particularly in high-stakes scenarios where hedging against risks is essential. Despite its significance, a consensus on the correct measurement of predictive uncertainty remains elusive. In this work, we return to first principles to develop a fundamental framework of information-theoretic predictive uncertainty measures. Our proposed framework categorizes predictive uncertainty measures according to two factors: (I) The predicting model (II) The approximation of the true predictive distribution. Examining all possible combinations of these two factors, we derive a set of predictive uncertainty measures that includes both known and newly introduced ones. We empirically evaluate these measures in typical uncertainty estimation settings, such as misclassification detection, selective prediction, and out-of-distribution detection. The results show that no single measure is universal, but the effectiveness depends on the specific setting. Thus, our work provides clarity about the suitability of predictive uncertainty measures by clarifying their implicit assumptions and relationships.
Abstract:Large language models (LLMs) can suffer from hallucinations when generating text. These hallucinations impede various applications in society and industry by making LLMs untrustworthy. Current LLMs generate text in an autoregressive fashion by predicting and appending text tokens. When an LLM is uncertain about the semantic meaning of the next tokens to generate, it is likely to start hallucinating. Thus, it has been suggested that hallucinations stem from predictive uncertainty. We introduce Semantically Diverse Language Generation (SDLG) to quantify predictive uncertainty in LLMs. SDLG steers the LLM to generate semantically diverse yet likely alternatives for an initially generated text. This approach provides a precise measure of aleatoric semantic uncertainty, detecting whether the initial text is likely to be hallucinated. Experiments on question-answering tasks demonstrate that SDLG consistently outperforms existing methods while being the most computationally efficient, setting a new standard for uncertainty estimation in LLMs.
Abstract:Applying a machine learning model for decision-making in the real world requires to distinguish what the model knows from what it does not. A critical factor in assessing the knowledge of a model is to quantify its predictive uncertainty. Predictive uncertainty is commonly measured by the entropy of the Bayesian model average (BMA) predictive distribution. Yet, the properness of this current measure of predictive uncertainty was recently questioned. We provide new insights regarding those limitations. Our analyses show that the current measure erroneously assumes that the BMA predictive distribution is equivalent to the predictive distribution of the true model that generated the dataset. Consequently, we introduce a theoretically grounded measure to overcome these limitations. We experimentally verify the benefits of our introduced measure of predictive uncertainty. We find that our introduced measure behaves more reasonably in controlled synthetic tasks. Moreover, our evaluations on ImageNet demonstrate that our introduced measure is advantageous in real-world applications utilizing predictive uncertainty.
Abstract:Quantifying uncertainty is important for actionable predictions in real-world applications. A crucial part of predictive uncertainty quantification is the estimation of epistemic uncertainty, which is defined as an integral of the product between a divergence function and the posterior. Current methods such as Deep Ensembles or MC dropout underperform at estimating the epistemic uncertainty, since they primarily consider the posterior when sampling models. We suggest Quantification of Uncertainty with Adversarial Models (QUAM) to better estimate the epistemic uncertainty. QUAM identifies regions where the whole product under the integral is large, not just the posterior. Consequently, QUAM has lower approximation error of the epistemic uncertainty compared to previous methods. Models for which the product is large correspond to adversarial models (not adversarial examples!). Adversarial models have both a high posterior as well as a high divergence between their predictions and that of a reference model. Our experiments show that QUAM excels in capturing epistemic uncertainty for deep learning models and outperforms previous methods on challenging tasks in the vision domain.
Abstract:In real world, affecting the environment by a weak policy can be expensive or very risky, therefore hampers real world applications of reinforcement learning. Offline Reinforcement Learning (RL) can learn policies from a given dataset without interacting with the environment. However, the dataset is the only source of information for an Offline RL algorithm and determines the performance of the learned policy. We still lack studies on how dataset characteristics influence different Offline RL algorithms. Therefore, we conducted a comprehensive empirical analysis of how dataset characteristics effect the performance of Offline RL algorithms for discrete action environments. A dataset is characterized by two metrics: (1) the average dataset return measured by the Trajectory Quality (TQ) and (2) the coverage measured by the State-Action Coverage (SACo). We found that variants of the off-policy Deep Q-Network family require datasets with high SACo to perform well. Algorithms that constrain the learned policy towards the given dataset perform well for datasets with high TQ or SACo. For datasets with high TQ, Behavior Cloning outperforms or performs similarly to the best Offline RL algorithms.