Abstract:Sound decision-making relies on accurate prediction for tangible outcomes ranging from military conflict to disease outbreaks. To improve crowdsourced forecasting accuracy, we developed SAGE, a hybrid forecasting system that combines human and machine generated forecasts. The system provides a platform where users can interact with machine models and thus anchor their judgments on an objective benchmark. The system also aggregates human and machine forecasts weighting both for propinquity and based on assessed skill while adjusting for overconfidence. We present results from the Hybrid Forecasting Competition (HFC) - larger than comparable forecasting tournaments - including 1085 users forecasting 398 real-world forecasting problems over eight months. Our main result is that the hybrid system generated more accurate forecasts compared to a human-only baseline which had no machine generated predictions. We found that skilled forecasters who had access to machine-generated forecasts outperformed those who only viewed historical data. We also demonstrated the inclusion of machine-generated forecasts in our aggregation algorithms improved performance, both in terms of accuracy and scalability. This suggests that hybrid forecasting systems, which potentially require fewer human resources, can be a viable approach for maintaining a competitive level of accuracy over a larger number of forecasting questions.
Abstract:Cyber attacks are growing in frequency and severity. Over the past year alone we have witnessed massive data breaches that stole personal information of millions of people and wide-scale ransomware attacks that paralyzed critical infrastructure of several countries. Combating the rising cyber threat calls for a multi-pronged strategy, which includes predicting when these attacks will occur. The intuition driving our approach is this: during the planning and preparation stages, hackers leave digital traces of their activities on both the surface web and dark web in the form of discussions on platforms like hacker forums, social media, blogs and the like. These data provide predictive signals that allow anticipating cyber attacks. In this paper, we describe machine learning techniques based on deep neural networks and autoregressive time series models that leverage external signals from publicly available Web sources to forecast cyber attacks. Performance of our framework across ground truth data over real-world forecasting tasks shows that our methods yield a significant lift or increase of F1 for the top signals on predicted cyber attacks. Our results suggest that, when deployed, our system will be able to provide an effective line of defense against various types of targeted cyber attacks.