Abstract:Convolutional neural networks (CNNs) can learn directly from raw data, resulting in exceptional performance across various research areas. However, factors present in non-controllable environments such as unlabeled datasets with varying levels of domain and category shift can reduce model accuracy. The Open Set Domain Adaptation (OSDA) is a challenging problem that arises when both of these issues occur together. Existing OSDA approaches in literature only align known classes or use supervised training to learn unknown classes as a single new category. In this work, we introduce a new approach to improve OSDA techniques by extracting a set of high-confidence unknown instances and using it as a hard constraint to tighten the classification boundaries. Specifically, we use a new loss constraint that is evaluated in three different ways: (1) using pristine negative instances directly; (2) using data augmentation techniques to create randomly transformed negatives; and (3) with generated synthetic negatives containing adversarial features. We analyze different strategies to improve the discriminator and the training of the Generative Adversarial Network (GAN) used to generate synthetic negatives. We conducted extensive experiments and analysis on OVANet using three widely-used public benchmarks, the Office-31, Office-Home, and VisDA datasets. We were able to achieve similar H-score to other state-of-the-art methods, while increasing the accuracy on unknown categories.
Abstract:Deep learning (DL) technologies can transform agriculture by improving crop health monitoring and management, thus improving food safety. In this paper, we explore the potential of edge computing for real-time classification of leaf diseases using thermal imaging. We present a thermal image dataset for plant disease classification and evaluate deep learning models, including InceptionV3, MobileNetV1, MobileNetV2, and VGG-16, on resource-constrained devices like the Raspberry Pi 4B. Using pruning and quantization-aware training, these models achieve inference times up to 1.48x faster on Edge TPU Max for VGG16, and up to 2.13x faster with precision reduction on Intel NCS2 for MobileNetV1, compared to high-end GPUs like the RTX 3090, while maintaining state-of-the-art accuracy.
Abstract:Segment Anything Model (SAM), a new AI model from Meta AI released in April 2023, is an ambitious tool designed to identify and separate individual objects within a given image through semantic interpretation. The advanced capabilities of SAM are the result of its training with millions of images and masks, and a few days after its release, several researchers began testing the model on medical images to evaluate its performance in this domain. With this perspective in focus -- i.e., optimizing work in the healthcare field -- this work proposes the use of this new technology to evaluate and study chest X-ray images. The approach adopted for this work, with the aim of improving the model's performance for lung segmentation, involved a transfer learning process, specifically the fine-tuning technique. After applying this adjustment, a substantial improvement was observed in the evaluation metrics used to assess SAM's performance compared to the masks provided by the datasets. The results obtained by the model after the adjustments were satisfactory and similar to cutting-edge neural networks, such as U-Net.
Abstract:The Channel Quality Indicator (CQI) plays a pivotal role in 5G networks, optimizing infrastructure dynamically to ensure high Quality of Service (QoS). Recent research has focused on improving CQI estimation in 5G networks using machine learning. In this field, the selection of the proper loss function is critical for training an accurate model. Two commonly used loss functions are Mean Squared Error (MSE) and Mean Absolute Error (MAE). Roughly speaking, MSE put more weight on outliers, MAE on the majority. Here, we argue that the Huber loss function is more suitable for CQI prediction, since it combines the benefits of both MSE and MAE. To achieve this, the Huber loss transitions smoothly between MSE and MAE, controlled by a user-defined hyperparameter called delta. However, finding the right balance between sensitivity to small errors (MAE) and robustness to outliers (MSE) by manually choosing the optimal delta is challenging. To address this issue, we propose a novel loss function, named Residual-based Adaptive Huber Loss (RAHL). In RAHL, a learnable residual is added to the delta, enabling the model to adapt based on the distribution of errors in the data. Our approach effectively balances model robustness against outliers while preserving inlier data precision. The widely recognized Long Short-Term Memory (LSTM) model is employed in conjunction with RAHL, showcasing significantly improved results compared to the aforementioned loss functions. The obtained results affirm the superiority of RAHL, offering a promising avenue for enhanced CQI prediction in 5G networks.
Abstract:Unsupervised domain adaptation (UDA) in videos is a challenging task that remains not well explored compared to image-based UDA techniques. Although vision transformers (ViT) achieve state-of-the-art performance in many computer vision tasks, their use in video domain adaptation has still been little explored. Our key idea is to use the transformer layers as a feature encoder and incorporate spatial and temporal transferability relationships into the attention mechanism. A Transferable-guided Attention (TransferAttn) framework is then developed to exploit the capacity of the transformer to adapt cross-domain knowledge from different backbones. To improve the transferability of ViT, we introduce a novel and effective module named Domain Transferable-guided Attention Block~(DTAB). DTAB compels ViT to focus on the spatio-temporal transferability relationship among video frames by changing the self-attention mechanism to a transferability attention mechanism. Extensive experiments on UCF-HMDB, Kinetics-Gameplay, and Kinetics-NEC Drone datasets with different backbones, like ResNet101, I3D, and STAM, verify the effectiveness of TransferAttn compared with state-of-the-art approaches. Also, we demonstrate that DTAB yields performance gains when applied to other state-of-the-art transformer-based UDA methods from both video and image domains. The code will be made freely available.
Abstract:Convolutional neural networks (CNNs) have achieved astonishing advances over the past decade, defining state-of-the-art in several computer vision tasks. CNNs are capable of learning robust representations of the data directly from the RGB pixels. However, most image data are usually available in compressed format, from which the JPEG is the most widely used due to transmission and storage purposes demanding a preliminary decoding process that have a high computational load and memory usage. For this reason, deep learning methods capable of learning directly from the compressed domain have been gaining attention in recent years. Those methods usually extract a frequency domain representation of the image, like DCT, by a partial decoding, and then make adaptation to typical CNNs architectures to work with them. One limitation of these current works is that, in order to accommodate the frequency domain data, the modifications made to the original model increase significantly their amount of parameters and computational complexity. On one hand, the methods have faster preprocessing, since the cost of fully decoding the images is avoided, but on the other hand, the cost of passing the images though the model is increased, mitigating the possible upside of accelerating the method. In this paper, we propose a further study of the computational cost of deep models designed for the frequency domain, evaluating the cost of decoding and passing the images through the network. We also propose handcrafted and data-driven techniques for reducing the computational complexity and the number of parameters for these models in order to keep them similar to their RGB baselines, leading to efficient models with a better trade off between computational cost and accuracy.
Abstract:Deep learning has achieved state-of-the-art performance on several computer vision tasks and domains. Nevertheless, it still has a high computational cost and demands a significant amount of parameters. Such requirements hinder the use in resource-limited environments and demand both software and hardware optimization. Another limitation is that deep models are usually specialized into a single domain or task, requiring them to learn and store new parameters for each new one. Multi-Domain Learning (MDL) attempts to solve this problem by learning a single model that is capable of performing well in multiple domains. Nevertheless, the models are usually larger than the baseline for a single domain. This work tackles both of these problems: our objective is to prune models capable of handling multiple domains according to a user-defined budget, making them more computationally affordable while keeping a similar classification performance. We achieve this by encouraging all domains to use a similar subset of filters from the baseline model, up to the amount defined by the user's budget. Then, filters that are not used by any domain are pruned from the network. The proposed approach innovates by better adapting to resource-limited devices while, to our knowledge, being the only work that handles multiple domains at test time with fewer parameters and lower computational complexity than the baseline model for a single domain.
Abstract:Convolutional Neural Networks (CNNs) have brought revolutionary advances to many research areas due to their capacity of learning from raw data. However, when those methods are applied to non-controllable environments, many different factors can degrade the model's expected performance, such as unlabeled datasets with different levels of domain shift and category shift. Particularly, when both issues occur at the same time, we tackle this challenging setup as Open Set Domain Adaptation (OSDA) problem. In general, existing OSDA approaches focus their efforts only on aligning known classes or, if they already extract possible negative instances, use them as a new category learned with supervision during the course of training. We propose a novel way to improve OSDA approaches by extracting a high-confidence set of unknown instances and using it as a hard constraint to tighten the classification boundaries of OSDA methods. Especially, we adopt a new loss constraint evaluated in three different means, (1) directly with the pristine negative instances; (2) with randomly transformed negatives using data augmentation techniques; and (3) with synthetically generated negatives containing adversarial features. We assessed all approaches in an extensive set of experiments based on OVANet, where we could observe consistent improvements for two public benchmarks, the Office-31 and Office-Home datasets, yielding absolute gains of up to 1.3% for both Accuracy and H-Score on Office-31 and 5.8% for Accuracy and 4.7% for H-Score on Office-Home.
Abstract:In precision agriculture, detecting productive crop fields is an essential practice that allows the farmer to evaluate operating performance separately and compare different seed varieties, pesticides, and fertilizers. However, manually identifying productive fields is often a time-consuming and error-prone task. Previous studies explore different methods to detect crop fields using advanced machine learning algorithms, but they often lack good quality labeled data. In this context, we propose a high-quality dataset generated by machine operation combined with Sentinel-2 images tracked over time. As far as we know, it is the first one to overcome the lack of labeled samples by using this technique. In sequence, we apply a semi-supervised classification of unlabeled data and state-of-the-art supervised and self-supervised deep learning methods to detect productive crop fields automatically. Finally, the results demonstrate high accuracy in Positive Unlabeled learning, which perfectly fits the problem where we have high confidence in the positive samples. Best performances have been found in Triplet Loss Siamese given the existence of an accurate dataset and Contrastive Learning considering situations where we do not have a comprehensive labeled dataset available.
Abstract:In the last decade, exponential data growth supplied machine learning-based algorithms' capacity and enabled their usage in daily-life activities. Additionally, such an improvement is partially explained due to the advent of deep learning techniques, i.e., stacks of simple architectures that end up in more complex models. Although both factors produce outstanding results, they also pose drawbacks regarding the learning process as training complex models over large datasets are expensive and time-consuming. Such a problem is even more evident when dealing with video analysis. Some works have considered transfer learning or domain adaptation, i.e., approaches that map the knowledge from one domain to another, to ease the training burden, yet most of them operate over individual or small blocks of frames. This paper proposes a novel approach to map the knowledge from action recognition to event recognition using an energy-based model, denoted as Spectral Deep Belief Network. Such a model can process all frames simultaneously, carrying spatial and temporal information through the learning process. The experimental results conducted over two public video dataset, the HMDB-51 and the UCF-101, depict the effectiveness of the proposed model and its reduced computational burden when compared to traditional energy-based models, such as Restricted Boltzmann Machines and Deep Belief Networks.