Abstract:Counterfactuals and counterfactual reasoning underpin numerous techniques for auditing and understanding artificial intelligence (AI) systems. The traditional paradigm for counterfactual reasoning in this literature is the interventional counterfactual, where hypothetical interventions are imagined and simulated. For this reason, the starting point for causal reasoning about legal protections and demographic data in AI is an imagined intervention on a legally-protected characteristic, such as ethnicity, race, gender, disability, age, etc. We ask, for example, what would have happened had your race been different? An inherent limitation of this paradigm is that some demographic interventions -- like interventions on race -- may not translate into the formalisms of interventional counterfactuals. In this work, we explore a new paradigm based instead on the backtracking counterfactual, where rather than imagine hypothetical interventions on legally-protected characteristics, we imagine alternate initial conditions while holding these characteristics fixed. We ask instead, what would explain a counterfactual outcome for you as you actually are or could be? This alternate framework allows us to address many of the same social concerns, but to do so while asking fundamentally different questions that do not rely on demographic interventions.
Abstract:Explaining artificial intelligence or machine learning models is an increasingly important problem. For humans to stay in the loop and control such systems, we must be able to understand how they interact with the world. This work proposes using known or assumed causal structure in the input variables to produce simple and practical explanations of supervised learning models. Our explanations -- which we name Causal Dependence Plots or CDP -- visualize how the model output depends on changes in a given predictor \emph{along with any consequent causal changes in other predictors}. Since this causal dependence captures how humans often think about input-output dependence, CDPs can be powerful tools in the explainable AI or interpretable ML toolkit and contribute to applications including scientific machine learning and algorithmic fairness. CDP can also be used for model-agnostic or black-box explanations.
Abstract:Counterfactuals are often described as 'retrospective,' focusing on hypothetical alternatives to a realized past. This description relates to an often implicit assumption about the structure and stability of exogenous variables in the system being modeled -- an assumption that is reasonable in many settings where counterfactuals are used. In this work, we consider cases where we might reasonably make a different assumption about exogenous variables, namely, that the exogenous noise terms of each unit do exhibit some unit-specific structure and/or stability. This leads us to a different use of counterfactuals -- a 'forward-looking' rather than 'retrospective' counterfactual. We introduce "counterfactual treatment choice," a type of treatment choice problem that motivates using forward-looking counterfactuals. We then explore how mismatches between interventional versus forward-looking counterfactual approaches to treatment choice, consistent with different assumptions about exogenous noise, can lead to counterintuitive results.
Abstract:A significant body of research in the data sciences considers unfair discrimination against social categories such as race or gender that could occur or be amplified as a result of algorithmic decisions. Simultaneously, real-world disparities continue to exist, even before algorithmic decisions are made. In this work, we draw on insights from the social sciences and humanistic studies brought into the realm of causal modeling and constrained optimization, and develop a novel algorithmic framework for tackling pre-existing real-world disparities. The purpose of our framework, which we call the "impact remediation framework," is to measure real-world disparities and discover the optimal intervention policies that could help improve equity or access to opportunity for those who are underserved with respect to an outcome of interest. We develop a disaggregated approach to tackling pre-existing disparities that relaxes the typical set of assumptions required for the use of social categories in structural causal models. Our approach flexibly incorporates counterfactuals and is compatible with various ontological assumptions about the nature of social categories. We demonstrate impact remediation with a real-world case study and compare our disaggregated approach to an existing state-of-the-art approach, comparing its structure and resulting policy recommendations. In contrast to most work on optimal policy learning, we explore disparity reduction itself as an objective, explicitly focusing the power of algorithms on reducing inequality.
Abstract:In this paper we propose a causal modeling approach to intersectional fairness, and a flexible, task-specific method for computing intersectionally fair rankings. Rankings are used in many contexts, ranging from Web search results to college admissions, but causal inference for fair rankings has received limited attention. Additionally, the growing literature on causal fairness has directed little attention to intersectionality. By bringing these issues together in a formal causal framework we make the application of intersectionality in fair machine learning explicit, connected to important real world effects and domain knowledge, and transparent about technical limitations. We experimentally evaluate our approach on real and synthetic datasets, exploring its behaviour under different structural assumptions.
Abstract:Most approaches in algorithmic fairness constrain machine learning methods so the resulting predictions satisfy one of several intuitive notions of fairness. While this may help private companies comply with non-discrimination laws or avoid negative publicity, we believe it is often too little, too late. By the time the training data is collected, individuals in disadvantaged groups have already suffered from discrimination and lost opportunities due to factors out of their control. In the present work we focus instead on interventions such as a new public policy, and in particular, how to maximize their positive effects while improving the fairness of the overall system. We use causal methods to model the effects of interventions, allowing for potential interference--each individual's outcome may depend on who else receives the intervention. We demonstrate this with an example of allocating a budget of teaching resources using a dataset of schools in New York City.
Abstract:In this work, we argue for the importance of causal reasoning in creating fair algorithms for decision making. We give a review of existing approaches to fairness, describe work in causality necessary for the understanding of causal approaches, argue why causality is necessary for any approach that wishes to be fair, and give a detailed analysis of the many recent approaches to causality-based fairness.
Abstract:Machine learning can impact people with legal or ethical consequences when it is used to automate decisions in areas such as insurance, lending, hiring, and predictive policing. In many of these scenarios, previous decisions have been made that are unfairly biased against certain subpopulations, for example those of a particular race, gender, or sexual orientation. Since this past data may be biased, machine learning predictors must account for this to avoid perpetuating or creating discriminatory practices. In this paper, we develop a framework for modeling fairness using tools from causal inference. Our definition of counterfactual fairness captures the intuition that a decision is fair towards an individual if it is the same in (a) the actual world and (b) a counterfactual world where the individual belonged to a different demographic group. We demonstrate our framework on a real-world problem of fair prediction of success in law school.