Abstract:Toward large scale electrophysiology data analysis, many preprocessing pipelines are developed to reject artifacts as the prerequisite step before the downstream analysis. A mainstay of these pipelines is based on the data driven approach -- Independent Component Analysis (ICA). Nevertheless, there is little effort put to the preprocessing quality control. In this paper, attentions to this issue were carefully paid by our observation that after running ICA based preprocessing pipeline: some subjects showed approximately Parallel multichannel Log power Spectra (PaLOS), namely, multichannel power spectra are proportional to each other. Firstly, the presence of PaLOS and its implications to connectivity analysis were described by real instance and simulation; secondly, we built its mathematical model and proposed the PaLOS index (PaLOSi) based on the common principal component analysis to detect its presence; thirdly, the performance of PaLOSi was tested on 30094 cases of EEG from 5 databases. The results showed that 1) the PaLOS implies a sole source which is physiologically implausible. 2) PaLOSi can detect the excessive elimination of brain components and is robust in terms of channel number, electrode layout, reference, and the other factors. 3) PaLOSi can output the channel and frequency wise index to help for in-depth check. This paper presented the PaLOS issue in the quality control step after running the preprocessing pipeline and the proposed PaLOSi may serve as a novel data quality metric in the large-scale automatic preprocessing.
Abstract:Objective: We introduce a methodology for selecting biomarkers from activation and connectivity derived from Electrophysiological Source Imaging (ESI). Specifically, we pursue the selection of stable biomarkers associated with cognitive decline based on source activation and connectivity patterns of resting-state EEG theta rhythm, used as predictors of physical performance decline in aging individuals measured by a Gait Speed (GS) slowing. Methods: Our two-step methodology involves estimating ESI using flexible sparse-smooth-nonnegative models, from which activation ESI (aESI) and connectivity ESI (cESI) features are derived. The Stable Sparse Classifier method then selects potential biomarkers related to GS changes. Results and Conclusions: Our predictive models using aESI outperform traditional methods such as the LORETA family. The models combining aESI and cESI features provide the best prediction of GS changes. Potential biomarkers from activation/connectivity patterns involve orbitofrontal and temporal cortical regions. Significance: The proposed methodology contributes to the understanding of activation and connectivity of GS-related ESI and provides features that are potential biomarkers of GS slowing. Given the known relationship between GS decline and cognitive impairment, this preliminary work opens novel paths to predict the progression of healthy and pathological aging and might allow an ESI-based evaluation of rehabilitation programs.