Abstract:Leveraging the large body of work devoted in recent years to describe redundancy and synergy in multivariate interactions among random variables, we propose a novel approach to quantify cooperative effects in feature importance, one of the most used techniques for explainable artificial intelligence. In particular, we propose an adaptive version of a well-known metric of feature importance, named Leave One Covariate Out (LOCO), to disentangle high-order effects involving a given input feature in regression problems. LOCO is the reduction of the prediction error when the feature under consideration is added to the set of all the features used for regression. Instead of calculating the LOCO using all the features at hand, as in its standard version, our method searches for the multiplet of features that maximize LOCO and for the one that minimize it. This provides a decomposition of the LOCO as the sum of a two-body component and higher-order components (redundant and synergistic), also highlighting the features that contribute to building these high-order effects alongside the driving feature. We report the application to proton/pion discrimination from simulated detector measures by GEANT.
Abstract:Objective: We introduce a methodology for selecting biomarkers from activation and connectivity derived from Electrophysiological Source Imaging (ESI). Specifically, we pursue the selection of stable biomarkers associated with cognitive decline based on source activation and connectivity patterns of resting-state EEG theta rhythm, used as predictors of physical performance decline in aging individuals measured by a Gait Speed (GS) slowing. Methods: Our two-step methodology involves estimating ESI using flexible sparse-smooth-nonnegative models, from which activation ESI (aESI) and connectivity ESI (cESI) features are derived. The Stable Sparse Classifier method then selects potential biomarkers related to GS changes. Results and Conclusions: Our predictive models using aESI outperform traditional methods such as the LORETA family. The models combining aESI and cESI features provide the best prediction of GS changes. Potential biomarkers from activation/connectivity patterns involve orbitofrontal and temporal cortical regions. Significance: The proposed methodology contributes to the understanding of activation and connectivity of GS-related ESI and provides features that are potential biomarkers of GS slowing. Given the known relationship between GS decline and cognitive impairment, this preliminary work opens novel paths to predict the progression of healthy and pathological aging and might allow an ESI-based evaluation of rehabilitation programs.