Abstract:Objective: We introduce a methodology for selecting biomarkers from activation and connectivity derived from Electrophysiological Source Imaging (ESI). Specifically, we pursue the selection of stable biomarkers associated with cognitive decline based on source activation and connectivity patterns of resting-state EEG theta rhythm, used as predictors of physical performance decline in aging individuals measured by a Gait Speed (GS) slowing. Methods: Our two-step methodology involves estimating ESI using flexible sparse-smooth-nonnegative models, from which activation ESI (aESI) and connectivity ESI (cESI) features are derived. The Stable Sparse Classifier method then selects potential biomarkers related to GS changes. Results and Conclusions: Our predictive models using aESI outperform traditional methods such as the LORETA family. The models combining aESI and cESI features provide the best prediction of GS changes. Potential biomarkers from activation/connectivity patterns involve orbitofrontal and temporal cortical regions. Significance: The proposed methodology contributes to the understanding of activation and connectivity of GS-related ESI and provides features that are potential biomarkers of GS slowing. Given the known relationship between GS decline and cognitive impairment, this preliminary work opens novel paths to predict the progression of healthy and pathological aging and might allow an ESI-based evaluation of rehabilitation programs.
Abstract:Current high-throughput data acquisition technologies probe dynamical systems with different imaging modalities, generating massive data sets at different spatial and temporal resolutions posing challenging problems in multimodal data fusion. A case in point is the attempt to parse out the brain structures and networks that underpin human cognitive processes by analysis of different neuroimaging modalities (functional MRI, EEG, NIRS etc.). We emphasize that the multimodal, multi-scale nature of neuroimaging data is well reflected by a multi-way (tensor) structure where the underlying processes can be summarized by a relatively small number of components or "atoms". We introduce Markov-Penrose diagrams - an integration of Bayesian DAG and tensor network notation in order to analyze these models. These diagrams not only clarify matrix and tensor EEG and fMRI time/frequency analysis and inverse problems, but also help understand multimodal fusion via Multiway Partial Least Squares and Coupled Matrix-Tensor Factorization. We show here, for the first time, that Granger causal analysis of brain networks is a tensor regression problem, thus allowing the atomic decomposition of brain networks. Analysis of EEG and fMRI recordings shows the potential of the methods and suggests their use in other scientific domains.