Abstract:The emerging ``Floor plan from human trails (PfH)" technique has great potential for improving indoor robot navigation by predicting the traversability of occluded floors. This study presents an innovative approach that replaces first-person-view sensors with a third-person-view monocular camera mounted on the observer robot. This approach can gather measurements from multiple humans, expanding its range of applications. The key idea is to use two types of trackers, SLAM and MOT, to monitor stationary objects and moving humans and assess their interactions. This method achieves stable predictions of traversability even in challenging visual scenarios, such as occlusions, nonlinear perspectives, depth uncertainty, and intersections involving multiple humans. Additionally, we extend map quality metrics to apply to traversability maps, facilitating future research. We validate our proposed method through fusion and comparison with established techniques.
Abstract:In ground-view object change detection, the recently emerging map-less navigation has great potential as a means of navigating a robot to distantly detected objects and identifying their changing states (appear/disappear/no-change) with high resolution imagery. However, the brute-force naive action strategy of navigating to every distant object requires huge sense/plan/action costs proportional to the number of objects. In this work, we study this new problem of ``Which distant objects should be prioritized for map-less navigation?" and in order to speed up the R{\&}D cycle, propose a highly-simplified approach that is easy to implement and easy to extend. In our approach, a new layer called map-based navigation is added on top of the map-less navigation, which constitutes a hierarchical planner. First, a dataset consisting of $N$ view sequences is acquired by a real robot via map-less navigation. Then, an environment simulator was built to simulate a simple action planning problem: ``Which view sequence should the robot select next?". Then, a solver was built inspired by the analogy to the multi-armed bandit problem: ``Which arm should the player select next?". Finally, the effectiveness of the proposed framework was verified using the semantically non-trivial scenario ``sofa as bookshelf".