Abstract:Cardiac computed tomography (CT) has emerged as a major imaging modality for the diagnosis and monitoring of cardiovascular diseases. High temporal resolution is essential to ensure diagnostic accuracy. Limited-angle data acquisition can reduce scan time and improve temporal resolution, but typically leads to severe image degradation and motivates for improved reconstruction techniques. In this paper, we propose a novel physics-informed score-based diffusion model (PSDM) for limited-angle reconstruction of cardiac CT. At the sampling time, we combine a data prior from a diffusion model and a model prior obtained via an iterative algorithm and Fourier fusion to further enhance the image quality. Specifically, our approach integrates the primal-dual hybrid gradient (PDHG) algorithm with score-based diffusion models, thereby enabling us to reconstruct high-quality cardiac CT images from limited-angle data. The numerical simulations and real data experiments confirm the effectiveness of our proposed approach.
Abstract:X-ray computed tomography (CT) based on photon counting detectors (PCD) extends standard CT by counting detected photons in multiple energy bins. PCD data can be used to increase the contrast-to-noise ratio (CNR), increase spatial resolution, reduce radiation dose, reduce injected contrast dose, and compute a material decomposition using a specified set of basis materials. Current commercial and prototype clinical photon counting CT systems utilize PCD-CT reconstruction methods that either reconstruct from each spectral bin separately, or first create an estimate of a material sinogram using a specified set of basis materials and then reconstruct from these material sinograms. However, existing methods are not able to utilize simultaneously and in a modular fashion both the measured spectral information and advanced prior models in order to produce a material decomposition. We describe an efficient, modular framework for PCD-based CT reconstruction and material decomposition using on Multi-Agent Consensus Equilibrium (MACE). Our method employs a detector proximal map or agent that uses PCD measurements to update an estimate of the pathlength sinogram. We also create a prior agent in the form of a sinogram denoiser that enforces both physical and empirical knowledge about the material-decomposed sinogram. The sinogram reconstruction is computed using the MACE algorithm, which finds an equilibrium solution between the two agents, and the final image is reconstructed from the estimated sinogram. Importantly, the modularity of our method allows the two agents to be designed, implemented, and optimized independently. Our results on simulated data show a substantial (450%) CNR boost vs conventional maximum likelihood reconstruction when applied to a phantom used to evaluate low contrast detectability.