Abstract:Machine learning applications to symbolic mathematics are becoming increasingly popular, yet there lacks a centralized source of real-world symbolic expressions to be used as training data. In contrast, the field of natural language processing leverages resources like Wikipedia that provide enormous amounts of real-world textual data. Adopting the philosophy of "mathematics as language," we bridge this gap by introducing a pipeline for distilling mathematical expressions embedded in Wikipedia into symbolic encodings to be used in downstream machine learning tasks. We demonstrate that a $\textit{mathematical}$ $\textit{language}$ $\textit{model}$ trained on this "corpus" of expressions can be used as a prior to improve the performance of neural-guided search for the task of symbolic regression.
Abstract:This paper exploits the intrinsic features of urban-scene images and proposes a general add-on module, called height-driven attention networks (HANet), for improving semantic segmentation for urban-scene images. It emphasizes informative features or classes selectively according to the vertical position of a pixel. The pixel-wise class distributions are significantly different from each other among horizontally segmented sections in the urban-scene images. Likewise, urban-scene images have their own distinct characteristics, but most semantic segmentation networks do not reflect such unique attributes in the architecture. The proposed network architecture incorporates the capability exploiting the attributes to handle the urban scene dataset effectively. We validate the consistent performance (mIoU) increase of various semantic segmentation models on two datasets when HANet is adopted. This extensive quantitative analysis demonstrates that adding our module to existing models is easy and cost-effective. Our method achieves a new state-of-the-art performance on the Cityscapes benchmark with a large margin among ResNet-101 based segmentation models. Also, we show that the proposed model is coherent with the facts observed in the urban scene by visualizing and interpreting the attention map. Our code and trained models are publicly available at https://github.com/shachoi/HANet