Abstract:Multispectral methods have gained considerable attention due to their promising performance across various fields. However, most existing methods cannot effectively utilize information from two modalities while optimizing time efficiency. These methods often prioritize accuracy or time efficiency, leaving room for improvement in their performance. To this end, we propose a new method bright channel prior attention for enhancing pedestrian detection in low-light conditions by integrating image enhancement and detection within a unified framework. The method uses the V-channel of the HSV image of the thermal image as an attention map to trigger the unsupervised auto-encoder for visible light images, which gradually emphasizes pedestrian features across layers. Moreover, we utilize unsupervised bright channel prior algorithms to address light compensation in low light images. The proposed method includes a self-attention enhancement module and a detection module, which work together to improve object detection. An initial illumination map is estimated using the BCP, guiding the learning of the self-attention map from the enhancement network to obtain more informative representation focused on pedestrians. The extensive experiments show effectiveness of the proposed method is demonstrated through.
Abstract:Recently, tensor singular value decomposition (t-SVD) has emerged as a promising tool for hyperspectral image (HSI) processing. In the t-SVD, there are two key building blocks: (i) the low-rank enhanced transform and (ii) the accompanying low-rank characterization of transformed frontal slices. Previous t-SVD methods mainly focus on the developments of (i), while neglecting the other important aspect, i.e., the exact characterization of transformed frontal slices. In this letter, we exploit the potentiality in both building blocks by leveraging the \underline{\bf H}ierarchical nonlinear transform and the \underline{\bf H}ierarchical matrix factorization to establish a new \underline{\bf T}ensor \underline{\bf F}actorization (termed as H2TF). Compared to shallow counter partners, e.g., low-rank matrix factorization or its convex surrogates, H2TF can better capture complex structures of transformed frontal slices due to its hierarchical modeling abilities. We then suggest the H2TF-based HSI denoising model and develop an alternating direction method of multipliers-based algorithm to address the resultant model. Extensive experiments validate the superiority of our method over state-of-the-art HSI denoising methods.