Abstract:We introduce EXAONE 3.0 instruction-tuned language model, the first open model in the family of Large Language Models (LLMs) developed by LG AI Research. Among different model sizes, we publicly release the 7.8B instruction-tuned model to promote open research and innovations. Through extensive evaluations across a wide range of public and in-house benchmarks, EXAONE 3.0 demonstrates highly competitive real-world performance with instruction-following capability against other state-of-the-art open models of similar size. Our comparative analysis shows that EXAONE 3.0 excels particularly in Korean, while achieving compelling performance across general tasks and complex reasoning. With its strong real-world effectiveness and bilingual proficiency, we hope that EXAONE keeps contributing to advancements in Expert AI. Our EXAONE 3.0 instruction-tuned model is available at https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
Abstract:Existing cross-lingual transfer (CLT) prompting methods are only concerned with monolingual demonstration examples in the source language. In this paper, we propose In-CLT, a novel cross-lingual transfer prompting method that leverages both source and target languages to construct the demonstration examples. We conduct comprehensive evaluations on multilingual benchmarks, focusing on question answering tasks. Experiment results show that In-CLT prompt not only improves multilingual models' cross-lingual transferability, but also demonstrates remarkable unseen language generalization ability. In-CLT prompting, in particular, improves model performance by 10 to 20\% points on average when compared to prior cross-lingual transfer approaches. We also observe the surprising performance gain on the other multilingual benchmarks, especially in reasoning tasks. Furthermore, we investigate the relationship between lexical similarity and pre-training corpora in terms of the cross-lingual transfer gap.
Abstract:In goal-oriented dialog systems, belief trackers estimate the probability distribution of slot-values at every dialog turn. Previous neural approaches have modeled domain- and slot-dependent belief trackers, and have difficulty in adding new slot-values, resulting in lack of flexibility of domain ontology configurations. In this paper, we propose a new approach to universal and scalable belief tracker, called slot-utterance matching belief tracker (SUMBT). The model learns the relations between domain-slot-types and slot-values appearing in utterances through attention mechanisms based on contextual semantic vectors. Furthermore, the model predicts slot-value labels in a non-parametric way. From our experiments on two dialog corpora, WOZ 2.0 and MultiWOZ, the proposed model showed performance improvement in comparison with slot-dependent methods and achieved the state-of-the-art joint accuracy.