Abstract:Although existing stereo matching models have achieved continuous improvement, they often face issues related to trustworthiness due to the absence of uncertainty estimation. Additionally, effectively leveraging multi-scale and multi-view knowledge of stereo pairs remains unexplored. In this paper, we introduce the \textbf{E}vidential \textbf{L}ocal-global \textbf{F}usion (ELF) framework for stereo matching, which endows both uncertainty estimation and confidence-aware fusion with trustworthy heads. Instead of predicting the disparity map alone, our model estimates an evidential-based disparity considering both aleatoric and epistemic uncertainties. With the normal inverse-Gamma distribution as a bridge, the proposed framework realizes intra evidential fusion of multi-level predictions and inter evidential fusion between cost-volume-based and transformer-based stereo matching. Extensive experimental results show that the proposed framework exploits multi-view information effectively and achieves state-of-the-art overall performance both on accuracy and cross-domain generalization. The codes are available at https://github.com/jimmy19991222/ELFNet.
Abstract:Contrastive learning (CL) has recently been applied to adversarial learning tasks. Such practice considers adversarial samples as additional positive views of an instance, and by maximizing their agreements with each other, yields better adversarial robustness. However, this mechanism can be potentially flawed, since adversarial perturbations may cause instance-level identity confusion, which can impede CL performance by pulling together different instances with separate identities. To address this issue, we propose to treat adversarial samples unequally when contrasted, with an asymmetric InfoNCE objective ($A-InfoNCE$) that allows discriminating considerations of adversarial samples. Specifically, adversaries are viewed as inferior positives that induce weaker learning signals, or as hard negatives exhibiting higher contrast to other negative samples. In the asymmetric fashion, the adverse impacts of conflicting objectives between CL and adversarial learning can be effectively mitigated. Experiments show that our approach consistently outperforms existing Adversarial CL methods across different finetuning schemes without additional computational cost. The proposed A-InfoNCE is also a generic form that can be readily extended to other CL methods. Code is available at https://github.com/yqy2001/A-InfoNCE.