Abstract:Echocardiogram video plays a crucial role in analysing cardiac function and diagnosing cardiac diseases. Current deep neural network methods primarily aim to enhance diagnosis accuracy by incorporating prior knowledge, such as segmenting cardiac structures or lesions annotated by human experts. However, diagnosing the inconsistent behaviours of the heart, which exist across both spatial and temporal dimensions, remains extremely challenging. For instance, the analysis of cardiac motion acquires both spatial and temporal information from the heartbeat cycle. To address this issue, we propose a novel reconstruction-based approach named CardiacNet to learn a better representation of local cardiac structures and motion abnormalities through echocardiogram videos. CardiacNet is accompanied by the Consistency Deformation Codebook (CDC) and the Consistency Deformed-Discriminator (CDD) to learn the commonalities across abnormal and normal samples by incorporating cardiac prior knowledge. In addition, we propose benchmark datasets named CardiacNet-PAH and CardiacNet-ASD to evaluate the effectiveness of cardiac disease assessment. In experiments, our CardiacNet can achieve state-of-the-art results in three different cardiac disease assessment tasks on public datasets CAMUS, EchoNet, and our datasets. The code and dataset are available at: https://github.com/xmed-lab/CardiacNet.
Abstract:3D-aware Generative Adversarial Networks (3D-GANs) currently exhibit artifacts in their 3D geometrical modeling, such as mesh imperfections and holes. These shortcomings are primarily attributed to the limited availability of annotated 3D data, leading to a constrained "valid latent area" for satisfactory modeling. To address this, we present a Self-Supervised Learning (SSL) technique tailored as an auxiliary loss for any 3D-GAN, designed to improve its 3D geometrical modeling capabilities. Our approach pioneers an inversion technique for 3D-GANs, integrating an encoder that performs adaptive spatially-varying range operations. Utilizing this inversion, we introduce the Cyclic Generative Constraint (CGC), aiming to densify the valid latent space. The CGC operates via augmented local latent vectors that maintain the same geometric form, and it imposes constraints on the cycle path outputs, specifically the generator-encoder-generator sequence. This SSL methodology seamlessly integrates with the inherent GAN loss, ensuring the integrity of pre-existing 3D-GAN architectures without necessitating alterations. We validate our approach with comprehensive experiments across various datasets and architectures, underscoring its efficacy. Our project website: https://3dgan-ssl.github.io
Abstract:Developing a deep learning method for medical segmentation tasks heavily relies on a large amount of labeled data. However, the annotations require professional knowledge and are limited in number. Recently, semi-supervised learning has demonstrated great potential in medical segmentation tasks. Most existing methods related to cardiac magnetic resonance images only focus on regular images with similar domains and high image quality. A semi-supervised domain generalization method was developed in [2], which enhances the quality of pseudo labels on varied datasets. In this paper, we follow the strategy in [2] and present a domain generalization method for semi-supervised medical segmentation. Our main goal is to improve the quality of pseudo labels under extreme MRI Analysis with various domains. We perform Fourier transformation on input images to learn low-level statistics and cross-domain information. Then we feed the augmented images as input to the double cross pseudo supervision networks to calculate the variance among pseudo labels. We evaluate our method on the CMRxMotion dataset [1]. With only partially labeled data and without domain labels, our approach consistently generates accurate segmentation results of cardiac magnetic resonance images with different respiratory motions. Code will be available after the conference.