Abstract:3D Human Mesh Reconstruction (HMR) from 2D RGB images faces challenges in environments with poor lighting, privacy concerns, or occlusions. These weaknesses of RGB imaging can be complemented by acoustic signals, which are widely available, easy to deploy, and capable of penetrating obstacles. However, no existing methods effectively combine acoustic signals with RGB data for robust 3D HMR. The primary challenges include the low-resolution images generated by acoustic signals and the lack of dedicated processing backbones. We introduce SonicMesh, a novel approach combining acoustic signals with RGB images to reconstruct 3D human mesh. To address the challenges of low resolution and the absence of dedicated processing backbones in images generated by acoustic signals, we modify an existing method, HRNet, for effective feature extraction. We also integrate a universal feature embedding technique to enhance the precision of cross-dimensional feature alignment, enabling SonicMesh to achieve high accuracy. Experimental results demonstrate that SonicMesh accurately reconstructs 3D human mesh in challenging environments such as occlusions, non-line-of-sight scenarios, and poor lighting.
Abstract:In this paper, we propose a novel and efficient parameter estimator based on $k$-Nearest Neighbor ($k$NN) and data generation method for the Lognormal-Rician turbulence channel. The Kolmogorov-Smirnov (KS) goodness-of-fit statistical tools are employed to investigate the validity of $k$NN approximation under different channel conditions and it is shown that the choice of $k$ plays a significant role in the approximation accuracy. We present several numerical results to illustrate that solving the constructed objective function can provide a reasonable estimate for the actual values. The accuracy of the proposed estimator is investigated in terms of the mean square error. The simulation results show that increasing the number of generation samples by two orders of magnitude does not lead to a significant improvement in estimation performance when solving the optimization problem by the gradient descent algorithm. However, the estimation performance under the genetic algorithm (GA) approximates to that of the saddlepoint approximation and expectation-maximization estimators. Therefore, combined with the GA, we demonstrate that the proposed estimator achieves the best tradeoff between the computation complexity and the accuracy.