Abstract:Numerical reasoning over hybrid data containing tables and long texts has recently received research attention from the AI community. To generate an executable reasoning program consisting of math and table operations to answer a question, state-of-the-art methods use a retriever-generator pipeline. However, their retrieval results are static, while different generation steps may rely on different sentences. To attend to the retrieved information that is relevant to each generation step, in this paper, we propose DyRRen, an extended retriever-reranker-generator framework where each generation step is enhanced by a dynamic reranking of retrieved sentences. It outperforms existing baselines on the FinQA dataset.
Abstract:The numerical reasoning in the financial domain -- performing quantitative analysis and summarizing the information from financial reports -- can greatly increase business efficiency and reduce costs of billions of dollars. Here, we propose a numerical reasoning question answering system to answer numerical reasoning questions among financial text and table data sources, consisting of a retriever module, a generator module, and an ensemble module. Specifically, in the retriever module, in addition to retrieving the whole row data, we innovatively design a cell retriever that retrieves the gold cells to avoid bringing unrelated and similar cells in the same row to the inputs of the generator module. In the generator module, we utilize multiple generators to produce programs, which are operation steps to answer the question. Finally, in the ensemble module, we integrate multiple programs to choose the best program as the output of our system. In the final private test set in FinQA Competition, our system obtains 69.79 execution accuracy.