Abstract:Vision-language foundation models (e.g., CLIP) have shown remarkable performance across a wide range of tasks. However, deploying these models may be unreliable when significant distribution gaps exist between the training and test data. The training-free test-time dynamic adapter (TDA) is a promising approach to address this issue by storing representative test samples to guide the classification of subsequent ones. However, TDA only naively maintains a limited number of reference samples in the cache, leading to severe test-time catastrophic forgetting when the cache is updated by dropping samples. In this paper, we propose a simple yet effective method for DistributiOnal Test-time Adaptation (Dota). Instead of naively memorizing representative test samples, Dota continually estimates the distributions of test samples, allowing the model to continually adapt to the deployment environment. The test-time posterior probabilities are then computed using the estimated distributions based on Bayes' theorem for adaptation purposes. To further enhance the adaptability on the uncertain samples, we introduce a new human-in-the-loop paradigm which identifies uncertain samples, collects human-feedback, and incorporates it into the Dota framework. Extensive experiments validate that Dota enables CLIP to continually learn, resulting in a significant improvement compared to current state-of-the-art methods.
Abstract:In this paper, we present the TacShade a newly designed 3D-printed soft optical tactile sensor. The sensor is developed for shape reconstruction under the inspiration of sketch drawing that uses the density of sketch lines to draw light and shadow, resulting in the creation of a 3D-view effect. TacShade, building upon the strengths of the TacTip, a single-camera tactile sensor of large in-depth deformation and being sensitive to edge and surface following, improves the structure in that the markers are distributed within the gap of papillae pins. Variations in light, dark, and grey effects can be generated inside the sensor through external contact interactions. The contours of the contacting objects are outlined by white markers, while the contact depth characteristics can be indirectly obtained from the distribution of black pins and white markers, creating a 2.5D visualization. Based on the imaging effect, we improve the Shape from Shading (SFS) algorithm to process tactile images, enabling a coarse but fast reconstruction for the contact objects. Two experiments are performed. The first verifies TacShade s ability to reconstruct the shape of the contact objects through one image for object distinction. The second experiment shows the shape reconstruction capability of TacShade for a large panel with ridged patterns based on the location of robots and image splicing technology.