Abstract:While the mainstream research in anomaly detection has mainly followed the one-class classification, practical industrial environments often incur noisy training data due to annotation errors or lack of labels for new or refurbished products. To address these issues, we propose a novel learning-based approach for fully unsupervised anomaly detection with unlabeled and potentially contaminated training data. Our method is motivated by two observations, that i) the pairwise feature distances between the normal samples are on average likely to be smaller than those between the anomaly samples or heterogeneous samples and ii) pairs of features mutually closest to each other are likely to be homogeneous pairs, which hold if the normal data has smaller variance than the anomaly data. Building on the first observation that nearest-neighbor distances can distinguish between confident normal samples and anomalies, we propose a pseudo-labeling strategy using an iteratively reconstructed memory bank (IRMB). The second observation is utilized as a new loss function to promote class-homogeneity between mutually closest pairs thereby reducing the ill-posedness of the task. Experimental results on two public industrial anomaly benchmarks and semantic anomaly examples validate the effectiveness of FUN-AD across different scenarios and anomaly-to-normal ratios. Our code is available at https://github.com/HY-Vision-Lab/FUNAD.
Abstract:Initialization-free bundle adjustment (BA) remains largely uncharted. While Levenberg-Marquardt algorithm is the golden method to solve the BA problem, it generally relies on a good initialization. In contrast, the under-explored Variable Projection algorithm (VarPro) exhibits a wide convergence basin even without initialization. Coupled with object space error formulation, recent works have shown its ability to solve (small-scale) initialization-free bundle adjustment problem. We introduce Power Variable Projection (PoVar), extending a recent inverse expansion method based on power series. Importantly, we link the power series expansion to Riemannian manifold optimization. This projective framework is crucial to solve large-scale bundle adjustment problem without initialization. Using the real-world BAL dataset, we experimentally demonstrate that our solver achieves state-of-the-art results in terms of speed and accuracy. In particular, our work is the first, to our knowledge, that addresses the scalability of BA without initialization and opens new venues for initialization-free Structure-from-Motion.
Abstract:Face recognition research now requires a large number of labelled masked face images in the era of this unprecedented COVID-19 pandemic. Unfortunately, the rapid spread of the virus has left us little time to prepare for such dataset in the wild. To circumvent this issue, we present a 3D model-based approach called WearMask3D for augmenting face images of various poses to the masked face counterparts. Our method proceeds by first fitting a 3D morphable model on the input image, second overlaying the mask surface onto the face model and warping the respective mask texture, and last projecting the 3D mask back to 2D. The mask texture is adapted based on the brightness and resolution of the input image. By working in 3D, our method can produce more natural masked faces of diverse poses from a single mask texture. To compare precisely between different augmentation approaches, we have constructed a dataset comprising masked and unmasked faces with labels called MFW-mini. Experimental results demonstrate WearMask3D, which will be made publicly available, produces more realistic masked images, and utilizing these images for training leads to improved recognition accuracy of masked faces compared to the state-of-the-art.