Abstract:The rise of AI and the Internet of Things is accelerating the digital transformation of society. Mobility computing presents specific barriers due to its real-time requirements, decentralization, and connectivity through wireless networks. New research on edge computing and tiny machine learning (tinyML) explores the execution of AI models on low-performance devices to address these issues. However, there are not many studies proposing agnostic architectures that manage the entire lifecycle of intelligent cyberphysical systems. This article extends a previous architecture based on FIWARE software components to implement the machine learning operations flow, enabling the management of the entire tinyML lifecycle in cyberphysical systems. We also provide a use case to showcase how to implement the FIWARE architecture through a complete example of a smart traffic system. We conclude that the FIWARE ecosystem constitutes a real reference option for developing tinyML and edge computing in cyberphysical systems.
Abstract:Automatic Speech Recognition (ASR) or Speech-to-text (STT) has greatly evolved in the last few years. Traditional architectures based on pipelines have been replaced by joint end-to-end (E2E) architectures that simplify and streamline the model training process. In addition, new AI training methods, such as weak-supervised learning have reduced the need for high-quality audio datasets for model training. However, despite all these advancements, little to no research has been done on real-time transcription. In real-time scenarios, the audio is not pre-recorded, and the input audio must be fragmented to be processed by the ASR systems. To achieve real-time requirements, these fragments must be as short as possible to reduce latency. However, audio cannot be split at any point as dividing an utterance into two separate fragments will generate an incorrect transcription. Also, shorter fragments provide less context for the ASR model. For this reason, it is necessary to design and test different splitting algorithms to optimize the quality and delay of the resulting transcription. In this paper, three audio splitting algorithms are evaluated with different ASR models to determine their impact on both the quality of the transcription and the end-to-end delay. The algorithms are fragmentation at fixed intervals, voice activity detection (VAD), and fragmentation with feedback. The results are compared to the performance of the same model, without audio fragmentation, to determine the effects of this division. The results show that VAD fragmentation provides the best quality with the highest delay, whereas fragmentation at fixed intervals provides the lowest quality and the lowest delay. The newly proposed feedback algorithm exchanges a 2-4% increase in WER for a reduction of 1.5-2s delay, respectively, to the VAD splitting.
Abstract:The implementation of machine learning in Internet of Things devices poses significant operational challenges due to limited energy and computation resources. In recent years, significant efforts have been made to implement simplified ML models that can achieve reasonable performance while reducing computation and energy, for example by pruning weights in neural networks, or using reduced precision for the parameters and arithmetic operations. However, this type of approach is limited by the performance of the ML implementation, i.e., by the loss for example in accuracy due to the model simplification. In this article, we present adaptive resolution inference (ARI), a novel approach that enables to evaluate new tradeoffs between energy dissipation and model performance in ML implementations. The main principle of the proposed approach is to run inferences with reduced precision (quantization) and use the margin over the decision threshold to determine if either the result is reliable, or the inference must run with the full model. The rationale is that quantization only introduces small deviations in the inference scores, such that if the scores have a sufficient margin over the decision threshold, it is unlikely that the full model would have a different result. Therefore, we can run the quantized model first, and only when the scores do not have a sufficient margin, the full model is run. This enables most inferences to run with the reduced precision model and only a small fraction requires the full model, so significantly reducing computation and energy while not affecting model performance. The proposed ARI approach is presented, analyzed in detail, and evaluated using different data sets for floating-point and stochastic computing implementations. The results show that ARI can significantly reduce the energy for inference in different configurations with savings between 40% and 85%.
Abstract:The wide adoption of Large language models (LLMs) makes their dependability a pressing concern. Detection of errors is the first step to mitigating their impact on a system and thus, efficient error detection for LLMs is an important issue. In many settings, the LLM is considered as a black box with no access to the internal nodes; this prevents the use of many error detection schemes that need access to the model's internal nodes. An interesting observation is that the output of LLMs in error-free operation should be valid and normal text. Therefore, when the text is not valid or differs significantly from normal text, it is likely that there is an error. Based on this observation we propose to perform Concurrent Linguistic Error Detection (CLED); this scheme extracts some linguistic features of the text generated by the LLM and feeds them to a concurrent classifier that detects errors. Since the proposed error detection mechanism only relies on the outputs of the model, then it can be used on LLMs in which there is no access to the internal nodes. The proposed CLED scheme has been evaluated on the T5 model when used for news summarization and on the OPUS-MT model when used for translation. In both cases, the same set of linguistic features has been used for error detection to illustrate the applicability of the proposed scheme beyond a specific case. The results show that CLED can detect most of the errors at a low overhead penalty. The use of the concurrent classifier also enables a trade-off between error detection effectiveness and its associated overhead, so providing flexibility to a designer.
Abstract:The growing interest in Large Language Models (LLMs) and in particular in conversational models with which users can interact has led to the development of a large number of open-source chat LLMs. These models are evaluated on a wide range of benchmarks to assess their capabilities in answering questions or solving problems on almost any possible topic or to test their ability to reason or interpret texts. Instead, the evaluation of the knowledge that these models have of the languages has received much less attention. For example, the words that they can recognize and use in different languages. In this paper, we evaluate the knowledge that open-source chat LLMs have of Spanish words by testing a sample of words in a reference dictionary. The results show that open-source chat LLMs produce incorrect meanings for an important fraction of the words and are not able to use most of the words correctly to write sentences with context. These results show how Spanish is left behind in the open-source LLM race and highlight the need to push for linguistic fairness in conversational LLMs ensuring that they provide similar performance across languages.
Abstract:The performance of conversational Large Language Models (LLMs) in general, and of ChatGPT in particular, is currently being evaluated on many different tasks, from logical reasoning or maths to answering questions on a myriad of topics. Instead, much less attention is being devoted to the study of the linguistic features of the texts generated by these LLMs. This is surprising since LLMs are models for language, and understanding how they use the language is important. Indeed, conversational LLMs are poised to have a significant impact on the evolution of languages as they may eventually dominate the creation of new text. This means that for example, if conversational LLMs do not use a word it may become less and less frequent and eventually stop being used altogether. Therefore, evaluating the linguistic features of the text they produce and how those depend on the model parameters is the first step toward understanding the potential impact of conversational LLMs on the evolution of languages. In this paper, we consider the evaluation of the lexical richness of the text generated by LLMs and how it depends on the model parameters. A methodology is presented and used to conduct a comprehensive evaluation of lexical richness using ChatGPT as a case study. The results show how lexical richness depends on the version of ChatGPT and some of its parameters, such as the presence penalty, or on the role assigned to the model. The dataset and tools used in our analysis are released under open licenses with the goal of drawing the much-needed attention to the evaluation of the linguistic features of LLM-generated text.
Abstract:In their seminal article on semantic vectors, Landauer and Dumain (1997) proposed testing the quality of AI language models with a challenging vocabulary test. We show that their Test of English as a Foreign Language (TOEFL) test remains informative for contemporary major language models, since none of the models was perfect and made errors on divergent items. The TOEFL test consists of target words with four alternatives to choose from. We further tested the models on a Yes/No test that requires distinguishing between existing words and made-up nonwords. The models performed significantly worse on the nonword items, in line with other observations that current major language models provide non-existent information. The situation was worse when we generalized the tests to Spanish. Here, most models gave meanings/translations for the majority of random letter sequences. On the plus side, the best models began to perform quite well, and they also pointed to nonwords that were unknown to the test participants but can be found in dictionaries.
Abstract:The introduction of ChatGPT has put Artificial Intelligence (AI) Natural Language Processing (NLP) in the spotlight. ChatGPT adoption has been exponential with millions of users experimenting with it in a myriad of tasks and application domains with impressive results. However, ChatGPT has limitations and suffers hallucinations, for example producing answers that look plausible but they are completely wrong. Evaluating the performance of ChatGPT and similar AI tools is a complex issue that is being explored from different perspectives. In this work, we contribute to those efforts with ChatWords, an automated test system, to evaluate ChatGPT knowledge of an arbitrary set of words. ChatWords is designed to be extensible, easy to use, and adaptable to evaluate also other NLP AI tools. ChatWords is publicly available and its main goal is to facilitate research on the lexical knowledge of AI tools. The benefits of ChatWords are illustrated with two case studies: evaluating the knowledge that ChatGPT has of the Spanish lexicon (taken from the official dictionary of the "Real Academia Espa\~nola") and of the words that appear in the Quixote, the well-known novel written by Miguel de Cervantes. The results show that ChatGPT is only able to recognize approximately 80% of the words in the dictionary and 90% of the words in the Quixote, in some cases with an incorrect meaning. The implications of the lexical knowledge of NLP AI tools and potential applications of ChatWords are also discussed providing directions for further work on the study of the lexical knowledge of AI tools.
Abstract:The introduction of Artificial Intelligence (AI) generative language models such as GPT (Generative Pre-trained Transformer) and tools such as ChatGPT has triggered a revolution that can transform how text is generated. This has many implications, for example, as AI-generated text becomes a significant fraction of the text, would this have an effect on the language capabilities of readers and also on the training of newer AI tools? Would it affect the evolution of languages? Focusing on one specific aspect of the language: words; will the use of tools such as ChatGPT increase or reduce the vocabulary used or the lexical richness? This has implications for words, as those not included in AI-generated content will tend to be less and less popular and may eventually be lost. In this work, we perform an initial comparison of the vocabulary and lexical richness of ChatGPT and humans when performing the same tasks. In more detail, two datasets containing the answers to different types of questions answered by ChatGPT and humans, and a third dataset in which ChatGPT paraphrases sentences and questions are used. The analysis shows that ChatGPT tends to use fewer distinct words and lower lexical richness than humans. These results are very preliminary and additional datasets and ChatGPT configurations have to be evaluated to extract more general conclusions. Therefore, further research is needed to understand how the use of ChatGPT and more broadly generative AI tools will affect the vocabulary and lexical richness in different types of text and languages.